
IA841 – Modelagem de Sólidos

Superfícies

Farin: Capítulos 14, 16, 17, 18



Produto Tensorial de Duas 
Curvas

● Interpolação Bilinear

x (u ,v )=(1−u u )(b00 b01
b10 b11)(

1−v
v )

Parabolóide hiperbólica

DomínioContradomínio

Função Interpoladora



Interpolação Bilinear

b10

b11b01
b00 b00

01
=(1−v)b00+vb01

b10
11
=(1−v)b10+vb11

x (u ,v )=b00
11
=(1−u)b00

01
+ub10

11

Representação Implícita: z=xy

Hipérbole

Parábola



Simetria
b00
01
=(1−v)b00+vb01

b10
11
=(1−v)b10+vb11

x (u ,v )=b00
11
=(1−u)b00

01
+ub10

11

x (u ,v )=b00
11
=(1−u)((1−v)b00+v b01)+u((1−v )b10+vb11)

x (u ,v )=b00
11
=(1−v)(1−u)b00+v (1−u)b01+(1−v)ub10+v ub11

x (u ,v )=b00
11
=(1−v)((1−u)b00+u b10)+v ((1−u)b01+u b11)

x (u ,v )=b00
11
=(1−v)b00

10
+vb01

11

b10

b11
b01

b00



Algoritmo de DeCasteljau
● Superfícies de grau nxn → (n+1)x(n+1) pontos
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rr (u , v)=(1−u u )(bij
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bi+1 j
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b00
nn
(u ,v ) : ponto sobre a superfície

Interpolações bilineares por partes



Exemplos

http://cagd-applets.webarchiv.kit.edu/mocca/html/noplugin/TPBezierSurface/AppDeCasteljau/index
.html

http://cagd-applets.webarchiv.kit.edu/mocca/html/noplugin/TPBezierSurface/AppDeCasteljau/index.html
http://cagd-applets.webarchiv.kit.edu/mocca/html/noplugin/TPBezierSurface/AppDeCasteljau/index.html


Superfície de Bézier

http://www.scratchapixel.com/old/lessons/3d-basic-lessons/lesson-11-rendering-the-teapot-bezier-surfaces/b-zier-su
rface/

Malha de controle

b00
33 (u1,v1)

Ponto da superfície

http://www.scratchapixel.com/old/lessons/3d-basic-lessons/lesson-11-rendering-the-teapot-bezier-surfaces/b-zier-surface/
http://www.scratchapixel.com/old/lessons/3d-basic-lessons/lesson-11-rendering-the-teapot-bezier-surfaces/b-zier-surface/


Malha Retangular
● Superfícies de grau nxm → (n+1)x(m+1) pontos

k=min(m,n);  l=max(m,n)

(1) interpolações bilineares até 
(2) (l-m) interpolações lineares

b ij
kk



Produto Tensorial
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Borda do Produto Tensorial

Curvas de Bézier



Curvas Isoparamétricas

● u constante → 

● v constante → 

û
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Propriedades

● Invariantes sob transformações afins.
● Convexidade.
● Interpolam os quatro vértices da malha de 
controle
● Satisfazem a propriedade de variation 
diminishing.



Vetores Normais

● Pontos interiores

● Borda e vértices

n⃗ (u , v)=

∂bmn(u , v)
∂u

×
∂bmn(u , v)

∂ v

∥
∂bmn(u , v)

∂u
×

∂bmn(u , v)
∂ v

∥
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b0n
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bm1
bm−10
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bm−1n

bmn−1



Diferenças Finitas

Δ f ( x)=
f (x+h)− f ( x)

( x+h)−x

Δ f ( x)=
f ( x)− f ( x−h)
x−( x−h)

Δ f ( x)=
f ( x+h)− f ( x−h)
( x+h)−(x−h)



Torsão (Twists)

● Mede o quanto a malha de controle de Bézier se desloca 
do paralelogramo formado por

b10

b01

(b11)

Δ10 bmn(i , j )=
bi+1j−b ij

Δ i
=b i+1j−bij

Δ
01bmn(i , j)=
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Δ j

=bij+1−bij= p ij−bi+1j

Δ
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Δ
11 bmn(i , j)=(bi+1j+1−bi+1j)−( pij−bi+1j)

Δ
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b ij ,bi+1j , bij+1



Notação Matricial

bmn(u , v)=(B0
m(u) ⋯ Bm

m(u))(
b00 ⋯ b0n
⋮ ⋱ ⋮
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)(
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m
(v)
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m
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(
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3
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0 3 −6 3
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1
v
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Superfícies Bicúbicas

(B0
3(u) B1

3(u) B2
3(u) B3

3(u))=(1 u u2 u3 )(
1 0 0 0

−3 3 0 0
3 −6 3 0

−1 3 −3 1
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Continuidade Cn

● Diferenciabilidade ou derivabilidade até ordem n
● Continuidade C1 na emenda

 

∂ x (um−1 , v)

∂ u
=

∂ y (0, v )
∂u

u

v

x (u ,v )

y (u , v)

x (um−1 , v )= y (0, v)

Continuidade C1 
em todas curvas 
isoparamétricas v

colineares e 
L2
L1

=cte



Superfícies de B-Spline

x (u ,v )=∑
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∑
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É assegurada a continuidade Cn-1 ao longo das 
curvas isoparamétricas sem nós múltiplos.



Superfícies Racionais

● Não são formadas pelos produtos 
tensoriais. São projeções de 
produtos tensoriais

http://de.wikipedia.org/wiki/Non-Uniform_Rational_B-Spline
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http://de.wikipedia.org/wiki/Non-Uniform_Rational_B-Spline


Curvas Isoparamétricas em NURBS
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Superfícies de Revolução

x (u ,v )=(
r (v)cosu
r (v ) senu
z (v) )

Meridiano

http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/NURBS/RB-circles.html

x (u ,v )=
P0(v)B0

2
(u)+0.5 P1(v)B1

2
(u)+P2(v )B2

2
(u)

B0
2(u)+0.5B1

2(u)+B2
2(u)

http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/NURBS/RB-circles.html


Volumes Bézier

http://www.gamasutra.com/view/feature/3372/realtime_softobject_animation_.php?print=1

bmnl (u ,v ,w )=∑
i=0

m

∑
j=0

n

∑
k=0

l

b ijk Bi
m
(u)B j

n
(v)Bk

l
(w )

(x , y , z )⇒(u ,v ,w) (û , v̂ , ŵ)⇒( x̂ , ŷ , ẑ )

http://www.gamasutra.com/view/feature/3372/realtime_softobject_animation_.php?print=1


Triângulos de Bézier

http://ogldev.atspace.co.uk/www/tutorial31/tutorial31.html

Grau: n
Números de vértices:

Soma dos índices 
dos vértices:

i+ j+k=n

http://ogldev.atspace.co.uk/www/tutorial31/tutorial31.html


Algoritmo de DeCasteljau
● Superfícies de grau n →                  pontos

b030

b120

b102 b201

b210

b012

b200
11

b020
1

b002
1

b011
1

b110
11

b000
3

b001
2

b010
2

b100
2

b 0⃗
n
(u , v ,w) : ponto sobre a superfície

Interpolações convexas

b I
r
=u bI +100

r−1
+v b I+010

r−1
+w bI +001

r−1

(n+1)(n+2)
2

b003 b300

b021

b101
1



Propriedades
● Invariantes sob transformações afins.
● Invariantes sob transformações afins dos 
parâmetros.
● Convexidade
● Borda é constituída pelas curvas de Bézier

b I
r
(0,u ,w)=ub I+010

r−1
+w b I+001

r−1

u+w=1



Blossom

http://cagd-applets.webarchiv.kit.edu/mocca/html/noplugin/BezierTriangle/AppDeCasteljau/index.html

Combinação convexa de 3 pontos

http://cagd-applets.webarchiv.kit.edu/mocca/html/noplugin/BezierTriangle/AppDeCasteljau/index.html


Blossom

P (s , s , s)
P (s , s , t)
P (s , s , u) P (s , s , [ s , t , u ])

P (t , t , s)
P (t , t , t )
P (t , t , u) P (t , t , [ s , t , u ]) P (s , [ s , t , u ] , [ s , t , u ])

P (u ,u , s)
P (u ,u , t)
P (u ,u ,u) P (u ,u , [ s , t , u ]) P (s , u , u)



Funções de Bernstein

●Triângulo de Bézier de grau 3

● Triângulo de Bézier de grau n

P (s , t , u)=(α s+β t+γ u)3=β
3 t3+3αβ

2 s t2+3β2 γ t2 u+3α2β s2 t

6αβγ stu+3β γ
2 t u2+3α2 s3+3α2

γ s2u+3αγ
2 su2+γ

3u3

P (s , t ,u)=(α s+β t+γ u)n= ∑
i+ j+k=n

( nijk )s
i t j ukαiβ j

γ
k

∑
i+ j+k=n

n!
i ! j ! k !

si t j ukα iβ j γk= ∑
i+ j+k=n

bijk Bijk
n ( s , t , u)

Pontos de 
controle

Funções de 
Base



Funções de Bernstein

B003
3 B120

3

B111
3



Subsivisões

●Pontos intermediários do algoritmo de de Casteljau 
formam pontos de controle dos sub-triângulos de Bézier



Subdivisãoes pelos 
baricentros

http%3A%2F%2Fwww.springer.com%2Fcda%2Fcontent%2Fdocument%2Fcda_download
document%2F9783540437611-c1.pdf%3FSGWID%3D0-0-45-85135-p2258136&ei=Bn8Y
VY_bJsSxggTa_IKYAg&usg=AFQjCNHx1M2DAn_ZxoJreep33PUu31hkWg&bvm=bv.893814
19,d.eXY&cad=rja

d

bn(d) divide o triângulo Bézier em 3 triângulos Bézier

http://www.google.com.br/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CCMQFjAA&url=http://www.springer.com/cda/content/document/cda_downloaddocument/9783540437611-c1.pdf?SGWID=0-0-45-85135-p2258136&ei=Bn8YVY_bJsSxggTa_IKYAg&usg=AFQjCNHx1M2DAn_ZxoJreep33PUu31hkWg&bvm=bv.89381419,d.eXY&cad=rja
http://www.google.com.br/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CCMQFjAA&url=http://www.springer.com/cda/content/document/cda_downloaddocument/9783540437611-c1.pdf?SGWID=0-0-45-85135-p2258136&ei=Bn8YVY_bJsSxggTa_IKYAg&usg=AFQjCNHx1M2DAn_ZxoJreep33PUu31hkWg&bvm=bv.89381419,d.eXY&cad=rja
http://www.google.com.br/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CCMQFjAA&url=http://www.springer.com/cda/content/document/cda_downloaddocument/9783540437611-c1.pdf?SGWID=0-0-45-85135-p2258136&ei=Bn8YVY_bJsSxggTa_IKYAg&usg=AFQjCNHx1M2DAn_ZxoJreep33PUu31hkWg&bvm=bv.89381419,d.eXY&cad=rja
http://www.google.com.br/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CCMQFjAA&url=http://www.springer.com/cda/content/document/cda_downloaddocument/9783540437611-c1.pdf?SGWID=0-0-45-85135-p2258136&ei=Bn8YVY_bJsSxggTa_IKYAg&usg=AFQjCNHx1M2DAn_ZxoJreep33PUu31hkWg&bvm=bv.89381419,d.eXY&cad=rja


Subdivisões pelas linhas 
radiais

bn(d)
a

b

c

d



Triângulos de Bézier Racionais

b(u)=
∑
I=n

w i bi Bi
n
(u)

∑
I=n

w i Bi
n
(u)
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