
DISCIPLINA EA701
Introdução aos Sistemas Embarcados

ROTEIRO 2: Linguagem para programação de microcontroladores

INTRODUÇÃO À PROGRAMAÇÃO DO STM32H7A3 NO STM32CubeIDE
USANDO LINGUAGEM C

Profs. Antonio A. F. Quevedo e Wu Shin-Ting

FEEC / UNICAMP

Revisado em julho de 2024

This work is licensed under Creative Commons Attribution-NonCommercial-ShareAlike 4.0
International. To view a copy of this license, visit
https://creativecommons.org/licenses/by-nc-sa/4.0/

https://creativecommons.org/licenses/by-nc-sa/4.0/

INTRODUÇÃO 2
PROJETOS-EXEMPLO 3

Criando um novo projeto em C bare metal 4
Criando um novo projeto em C bare-metal usando CMSIS 15

PYTHON E C 22
DETALHES DA LINGUAGEM C 25
PROGRAMAÇÃO C EM MICROCONTROLADORES 30
TOOLCHAINS 35

INTRODUÇÃO

No primeiro roteiro, vimos como um microcontrolador pode comandar seus periféricos, e como o
microcontrolador pode ser programado para executar automaticamente uma sequência de tarefas
através de linguagem assembly. Procuramos evidenciar que programar microcontroladores consiste
essencialmente em configurar sequencialmente os bits dos registradores desses microcontroladores,
permitindo que eles executem as funções desejadas. É uma habilidade fundamental para
engenheiros e entusiastas da eletrônica, pois possibilita criar sistemas embarcados capazes de
realizar uma vasta gama de tarefas.

A programação de microcontroladores pode variar em termos de nível de abstração. A manipulação
direta dos bits, frequentemente chamada de “escovar os bits”, envolve a configuração manual dos
bits nos registradores do microcontrolador. É a forma mais básica e de baixo nível de executar
sequencialmente um procedimento, proporcionando total controle sobre o hardware. Embora seja
eficiente, pode ser propensa a erros e difícil de manter. A programação em assembly é um nível de
abstração ligeiramente superior à manipulação direta dos bits. Vimos no Roteiro 1 que assembly
permite escrever instruções que correspondem diretamente às operações humanas, oferecendo um
controle preciso sobre o hardware. Ela automatiza operações humanas, mas também pode ser
complexa e difícil de ler e manter, similar à manipulação direta dos bits.

Agora, vamos introduzir uma linguagem de programação compilada, conhecida como C. Esta
linguagem pode ser considerada de nível médio, e é muito adequada para a programação de
microcontroladores, pois tem uma sintaxe mais legível e estruturada do que assembly , sem perder a
capacidade de controlar diretamente os registradores. Além disso, C é amplamente suportada por
compiladores e ferramentas de desenvolvimento para microcontroladores. Nos últimos anos, houve
esforços significativos para trazer linguagens de alto nível, como Python, para o domínio dos
sistemas embarcados. Frameworks, como MicroPython e CircuitPython, permitem programar

microcontroladores usando Python, oferecendo uma sintaxe amigável e rápida prototipagem. No
entanto, esses esforços enfrentam desafios no estado da arte. Python é uma linguagem de
programação interpretada e geralmente menos eficiente em termos de tempo de execução e uso
de memória em comparação com C. Isso pode ser um impedimento em sistemas embarcados
críticos, que exigem alto desempenho e comportamento determinístico. Além disso, o suporte para
diferentes microcontroladores e periféricos em Python é mais limitado em comparação com C.
Muitos drivers e bibliotecas ainda estão em desenvolvimento ou não estão disponíveis.

A relação entre C e Python é mais estreita do que se pode imaginar. As sintaxes das duas linguagens
apresentam muitas semelhanças, exceto nos operadores relacionados ao uso da memória. Muitos
módulos de Python são implementados em C ou C++. Por ser considerada uma camada que expõe a
linguagem C/C++ de forma mais acessível, muitos educadores, como Carl Burch, acreditam que
uma boa maneira de introduzir um programador a C é começar com Python. Este roteiro representa
uma transição de Python para C.

É importante mencionar que escolher a linguagem de programação certa para microcontroladores
depende das necessidades específicas do projeto, do nível de controle requerido e das preferências
do desenvolvedor. Enquanto a programação em assembly proporciona total controle sobre o
hardware, a linguagem C oferece um equilíbrio robusto entre controle e facilidade de uso. Por outro
lado, iniciativas para utilizar Python estão em andamento e prometem simplificar ainda mais o
desenvolvimento, embora ainda enfrentam desafios significativos. Independentemente da
linguagem escolhida, o objetivo final permanece o mesmo: configurar os bits dos registradores do
microcontrolador para que ele realize as tarefas desejadas de maneira eficiente e confiável.

Neste roteiro, exploraremos como utilizar a linguagem C para programar os bits dos
microcontroladores e como combinar código em assembly com C. Abordaremos também como
aproveitar os recursos da linguagem para acessar registradores através de mnemônicos e
nomes mais legíveis, em vez de usar diretamente endereços e bits dos registradores.

PROJETOS-EXEMPLO

No Roteiro 1, destacamos que, além da programação em linguagem assembly, no nível de máquina,
é possível utilizar a linguagem C, um nível de programação intermediário, para programar a maioria
dos microcontroladores. Neste roteiro, exploraremos como realizar a programação nesse nível e
analisaremos o suporte de depuração oferecido por diversas ferramentas profissionais.

Criando um novo projeto em C bare metal

Neste projeto, configuraremos o microcontrolador para realizar a mesma tarefa de piscar o LED
verde abordada no Roteiro 1, mas utilizando a linguagem C para a programação. Para desenvolver o
programa, siga os passos 1 a 7.

1. Deve-se iniciar um novo projeto, exatamente como foi feito no módulo anterior, selecionando a
placa NUCLEO e criando o projeto com o nome “PiscaBare”, lembrando de selecionar a opção
“Empty” no campo “Targeted Project Type”.

2. A seguir, o IDE entra na perspectiva de Programação. À esquerda, temos o painel “Project
Explorer”, no qual podemos ver a estrutura de arquivos do projeto criado. Expanda todas as
subpastas clicando nos ícones de seta (‘>’). A subpasta “Includes” geralmente contém arquivos de
cabeçalho que são incluídos globalmente em todo o projeto. Por padrão, o IDE inclui arquivos de
cabeçalho da biblioteca padrão C e ARM nesta pasta, que fornecem declarações de funções,
variáveis globais, macros e tipos de dados.

A subpasta “Inc” é frequentemente utilizada para armazenar arquivos de cabeçalho específicos do
projeto, como definições e interfaces relacionadas ao código desenvolvido. A subpasta “Src”
contém os arquivos de código-fonte que são compilados durante a construção do projeto. A
subpasta “Startup” inclui código-fonte em assembly, “startup_stm32h7a3zitxq.s”, responsável pela
inicialização básica do microcontrolador, garantindo seu funcionamento correto. A subpasta
“Debug” armazena todos os arquivos intermediários relacionados à construção do projeto. Além
disso, dois scripts, STM32H7A3ZITXQ_FLASH.ld e STM32H7A3ZITXQ_RAM.ld, especificam a
organização dos códigos nas memórias Flash e RAM, ou apenas em RAMs, do microcontrolador
quando são transferidos para ele.

Dê um duplo-clique no arquivo “main.c” na sub-pasta “Src” para abri-lo no editor de texto interno
do IDE.

3. Agora vamos criar um programa em C que faz o LED verde da placa piscar, semelhante ao
programa em assembly descrito no Roteiro 1. Em vez de usar diretivas de assembly, usaremos
comandos em linguagem C para configurar os mesmos bits nos mesmos registradores. Para isso,

declararemos variáveis para os endereços dos registradores, permitindo que possamos aplicar
operações sobre eles. Em vez da diretiva “.word”, declaramos quatro variáveis: RCC_AHB4ENR,
GPIOB_MODER, GPIOB_OTYPER e GPIOB_ODR, todas do tipo “uint32_t *” (ponteiro para
valores inteiros de 32 bits). Essas variáveis são globais, porque são declaradas fora do escopo da
função “main”.

Definimos uma macro ITERACOES para representar a constante 500000, que é substituída
literalmente no código antes da compilação. Durante a compilação, o compilador C alocará
automaticamente um espaço de memória para armazenar o valor da constante 500000. Não é
necessário alocá-lo explicitamente como em assembly. Note que usamos uma conversão explícita
dos valores numéricos dos endereços dos registradores com (uint32_t *), como em (uint32_t
*)58024540, para que sejam tratados como endereços de memória. Além disso, o tipo de ponteiro
“uint32_t *” é qualificado com “volatile” para indicar que o conteúdo desses registradores pode ser
alterado por eventos externos ao fluxo de controle do processador.

Assembly C

4. Em termos de operações lógicas, devemos aplicar as seguinte operações sobre o conteúdo dos
registradores

RCC_AHB4ENR = RCC_AHB4ENR OR 0x00000002;

GPIOB_MODER = ((GPIOB_MODER OR 0x00000001) AND 0xFFFFFFFD);

GPIOB_OTYPER = GPIOB_OTYPER AND 0xFFFFFFFE;

LED apagado: GPIOB_ODR = GPIOB_ODR AND 0xFFFFFFFE;

LED aceso: GPIOB_ODR |= GPIOB_ODR OR 0x00000001;

Isso pode ser implementado diretamente em C usando as máscaras OR e/ou AND, tornando o
código muito mais simples e legível em comparação com a versão em assembly:

*RCC_AHB4ENR = *RCC_AHB4ENR | 0x00000002;

*GPIOB_MODER = ((*GPIOB_MODER | 0x00000001) & 0xFFFFFFFD);

*GPIOB_OTYPER = *GPIOB_OTYPER & 0xFFFFFFFE;

LED apagado: *GPIOB_ODR = *GPIOB_ODR & 0xFFFFFFFE;

LED aceso: *GPIOB_ODR |= *GPIOB_ODR | 0x00000001;

5. Vamos incluir o bloco de instruções para aumentar o intervalo de tempo entre os dois estados do
LED verde usando o comando de laço “for” suportado por C. Este comando precisa de um iterador
que deve ser declarado antes do uso. Declaramos uma variável “i” do tipo uint32_t.

6. Não se esqueça de salvar as modificações do arquivo (Ctrl-S ou o ícone de salvar). Depois use o
ícone de “martelo” para fazer o “Build”, ou seja, compilar os arquivos do projeto, realizar as
ligações entre eles e gerar o executável “PiscaBare.elf” usando o script
“STM32H7A3ZITXQ_FLASH.ld” de configuração do layout das instruções e dados na memória.
Os passos de construção são mostrados na janela “CDT Build Console.” São 4 comandos de
compilação e 1 comando de linkagem.

7. Após o “Build”, estamos prontos para carregar o programa na placa seguindo o layout definido
no script STM32H7A3ZITXQ_FLASH.ld (default) e executá-lo.

Podemos, no entanto, fazer alguma análise antes da execução. No script
STM32H7A3ZITXQ_FLASH.ld, a função “Reset_Handler” é definida como o ponto de entrada do
programa, ou seja, a primeira instrução a ser executada após um reset. O topo da pilha, _estack, fica
no endereço ORIGIN(RAM)+LENGTH(RAM) = 0x24000000 + 210 * 1024) = 0x24000000 +
0x100000 = 0x24100000. O tamanho mínimo recomendado para a pilha, que armazena variáveis
locais, e para o heap, que armazena dados alocados dinamicamente durante a execução, são,
respectivamente, 0x400 bytes e 0x200 bytes.

Os endereços do topo da pilha e da primeira instrução são carregados, respectivamente, nos
endereços 0x80000000 e 0x80000004 ao carregarmos o código executável para o microcontrolador.
Podemos constatar isso se habilitarmos a aba “Memory” (“Window” > “Show View” > “Memory”).

É possível alterar o formato de apresentação dos bytes organizados na memória. Ao clicar qualquer
dado renderizado, aparecerá um pop-up menu na aba “Memory”. Selecione “Format …” e surgirá a
seguinte janela para configurar a quantidade de bytes por linha e a quantidade de bytes por coluna.
Dê “OK” após a configuração. O layout padrão exibe 16 bytes por linha, com os bytes agrupados em
blocos de 4. Para verificar a ordenação dos bytes na memória com maior precisão, utilize o
agrupamento de 1 byte por vez.

8. Vamos verificar se os endereços das instruções e dados transferidos para o microcontrolador estão
condizentes com o layout especificado. Para isso, vamos adicionar a janela “Disassembly”
(“Window” > “Show View” > “Disassembly”). Nesta janela, observe os endereços das instruções na

primeira coluna, destacados em verde. Estão as instruções armazenadas na memória Flash? E a
variável “i”, que é um dado, está armazenada em qual memória? Também observe uma tarja verde
tanto na janela do editor quanto na janela “Disassembly”. Essa tarja verde indica a instrução atual
em execução, correspondente a um comando em C e sua respectiva instrução em assembly.

Para monitorar variáveis globais, habilite a aba “Expressions” (“Window” > “Show View” >
“Expressions”). Na janela que aparece, há apenas um símbolo “+” em verde, para que novas
expressões sejam adicionadas. Assim, pode-se adicionar expressões elaboradas para visualização.
Como o projeto foi criado da forma básica, não há suporte para visualização direta dos registradores
dos periféricos, e por isso vamos adicionar como expressões os ponteiros criados para acesso aos
registradores. Clicando no símbolo de “+”, aparece um espaço para digitar a expressão. Neste
espaço, digite “*RCC_AHB4ENR” e dê “Enter”. O ponteiro com seu valor aparecerá na linha.
Repita o processo para os outros três ponteiros criados. Para visualizar os endereços dessas
variáveis, clique no ícone de três pontos no canto superior direito da aba “Expressions” e habilite
“Address” no pop-up menu que aparece ao seguir o caminho “Layout” > “Select Columns”. Ao
final do processo, deve-se ter a aba de Expressões conforme a figura abaixo.

Onde estão armazenadas essas variáveis globais?

9. Vamos explorar dois métodos para monitorar o fluxo de execução. Ao clicar no ícone “Step
Over” (ou pressionar F6), observamos o avanço de uma linha de instrução na janela do editor de C.

O bloco de instruções em assembly entre duas linhas de código em C, que estão comentadas no
código assembly, corresponde à tradução da instrução “*RCC_AHB4ENR = *RCC_AHB4ENR |
0x00000002;” em instruções assembly pelo compilador C.

Habilite o modo “Instruction Stepping Mode”, clicando no ícone “i com uma seta amarela”, e
avance um passo para frente com um clique no ícone “Step Over”. Em qual janela, “Editor” or
“Dissassembly”, foi avançada uma linha de comando?

10. Para verificar se os valores dos registradores SP e PC estão de acordo com o layout especificado,
abra a aba “Registers” e expanda o item “General Registers” clicando em “>”. Como a função
“Reset_Handler” está definida no arquivo “startup_stm32h7a3zitxq.s”, retorne à perspectiva de
Programação e abra esse arquivo com um duplo clique no aba “Project Explorer”. Na janela de

editor aberta, localize a função “Reset_Handler” em assembly e insira um ponto de interrupção na
sua primeira instrução.

Volte para a Perspectiva de Depuração e pressione o ícone “Reset the chip and restart the debug
session”. Leia o conteúdo do SP e PC na aba “Registers”. Observe que o bit 0 do valor do PC,
0x800003A8, é ‘0’, enquanto o bit 0 do valor carregado no endereço 0x08000004, 0x800003A9, é
‘1’. Este bit determina o modo de processamento de instrução usado para interpretar as instruções
buscadas pelo PC em cada etapa do seu progresso: se o bit 0 é ‘0’, o processador está em modo
ARM (instruções de 32 bits); se o bit 0 é ‘1’, o processador está em modo Thumb (instruções de 16
bits).

11. Clique no ícone “Terminate and Relaunch”. Em seguida, “Resume”. O que aconteceu com o
LED verde?

12. Vamos agora adicionar novas funções ao arquivo 'main.c' para praticar chamadas de funções.
Substituímos o laço “for” por uma chamada de função “void espera(uint32_t valor)”, que passa o
parâmetro “valor” por valor. Esta função, por sua vez, invoca a função “void
multiplo_iteracoes(uint32_t valor, uint32_t *j)” para calcular o número de iterações que o comando
“while” na função “espera” deve executar.

Note que a função “multiplo_iteracoes” possui dois parâmetros: o primeiro é passado por valor,
enquanto o segundo recebe o valor de endereço da variável “i”, declarada na função “espera”.
Observe também como esses parâmetros são acessados dentro da função. O valor do parâmetro
passado por valor de endereço, “j”, é acessado através de “*j”.

Dentro da função “espera” em que a variável “i” é declarada, o valor de endereço desta variável é
passada pelo comando “&i”.

13. Faça “Build” da nova versão e reexecute o projeto no modo “Debug”. Certifique na aba
“Disassembly” a integração das duas novas funções “espera” e “multitplo_iteracoes” através dos
endereços das duas instruções.

14. Agora altere o programa para que pisque o LED amarelo (ligado em PE1) em vez do LED
verde. Deve-se alterar o bit do registrador do RCC para ativar GPIOE em vez de GPIOB. Além
disso, os bits a serem modificados nos registradores do GPIOE se referem ao pino 1 e não mais ao
pino 0.

CRIANDO UM NOVO PROJETO EM C BARE-METAL E ASSEMBLY

Nem todas as funções de hardware têm um comando equivalente direto na linguagem C, como é o
caso do deslocamento aritmético ASR. Para superar essas limitações, a linguagem C oferece a
diretiva “asm”, que permite a integração de código em assembly. Isso possibilita aproveitar as
vantagens de ambas as linguagens de forma complementar. Este projeto demonstra essa integração
ao realizar a mesma tarefa de piscar o LED verde.

1. Vamos criar um novo projeto, selecionando a placa NUCLEO e criando o projeto com o nome
“PiscaBare_ASM”, lembrando de selecionar a opção “Empty” no campo “Targeted Project Type”.

2. Vamos reusar o código “main.c” do projeto “PiscaBare”, sobrescrevendo o arquivo “main.c” com
o “main.c” so projeto “PiscaBare”. Para isso, localize o arquivo “main.c” do projeto “PiscaBare”
com uso de um explorador de arquivos. Copie o arquivo e vá para a aba “Project Explorer”. Clique
o botão direito na sub-pasta “Src” e selecione “Paste” para colar o arquivo copiado. O
STM32CubeIDE perguntará se você quer sobrescrever o arquivo existente. Confirme “Overwrite”.

3. Abra o arquivo “main.c” no “Editor” com duplo-clique.Vamos substituir as instruções em C por
assembly na função “multiplo_interacoes” usando a diretiva “asm”, ou “__asm” ou “__asm__”,
dependendo do compilador. Para não reinventar a roda, vamos analisar como o compilador traduziu
essas instruções em assembly na aba “Disassembly” da perspectiva de Depuração. Isso requer que
construamos e executemos o projeto. Vale ressaltar que o compilador C insere automaticamente
instruções para o chaveamento de contexto ao traduzir uma chamada de função. Essas instruções,
destacadas pela linha vermelha, incluem o salvamento dos registradores de trabalho (R0-R7, SP, LR
e PC), a alocação de espaço na pilha para empilhar variáveis locais na entrada da função, e a
recuperação dos valores dos registradores e desempilhamento das variáveis locais na saída da
função. Abordaremos esse processo em detalhes mais adiante. O que nos interessa são as 4
instruções no formato de instrução ARM, “mov.w”, “mul.w”, “ldr” e “str”.

Como nosso microcontrolador suporta apenas o formato Thumb, precisamos ajustar o formato das
instruções para que sejam compatíveis com esse conjunto de instruções. Além disso, como não
temos acesso direto ao endereço que o compilador alocou para a constante “ITERACOES”,
devemos criar uma variável local chamada “i” para armazenar o valor da constante e, em seguida,
passar o endereço dessa variável para as instruções em assembly.

4. Faça “Build” e execute o novo projeto.

5. Redefina as funções conforme descrito abaixo e traduza as instruções da nova função

“multiplo_iteracoes” para assembly embutido em C.

multiplo_iteracoes (uint32_t *valor) {

*valor = *valor * ITERACOES;

}

void espera (uint32_t valor) {

uint32_t i = valor;

multiplo_iteracoes (&i);

while (i) i--;

}

Mude a cor do LED de verde para amarelo. Faça “Build” e execute o projeto. Depois exporte o

projeto em um arquivo ZIP, após filtrar com “Clean …”, para ser incluído no Moodle.

Criando um novo projeto em C bare-metal usando CMSIS

A CMSIS (do inglês Cortex Microcontroller Software Interface Standard) desempenha um papel
crucial no desenvolvimento de códigos para microcontroladores, oferecendo uma série de vantagens
significativas em termos de portabilidade, acesso eficiente ao hardware e disponibilidade de
recursos pré-desenvolvidos. Esta padronização, promovida por fabricantes de microcontroladores
como ARM, busca unificar e simplificar a criação de software para diferentes dispositivos,
beneficiando tanto desenvolvedores quanto fabricantes. A padronização reflete em diversos níveis,
desde o nível do processador até o sistema completo de uma placa de desenvolvimento. Vamos
apresentar um projeto em que explora a padronização a nível do microcontrolador
STM32H7A3ZIT6-Q.

1. Inicia-se um novo projeto, exatamente como foi feito no módulo anterior, selecionando a placa
NUCLEO e criando o projeto com o nome “PiscaBare_CMSIS”, lembrando de selecionar a opção
“Empty” no campo “Targeted Project Type”.

2. A seguir, o IDE entra na perspectiva de Programação. Antes de iniciar a edição de um programa

em C, vamos adicionar os arquivos de cabeçalho que oferecem mnemônicos padronizados para

acessar os registradores e seus campos de bits. Vamos para “Project” > “Properties”. Em seguida,

selecionamos “C/C++ General” > “Paths and Symbols”. Na aba “Includes”, selecione (“Add”) para
incluir o caminho da pasta que contém o arquivo “stm327a3xxq.h”. Geralmente é o caminho para as
bibliotecas CMSIS e HAL no repositório fornecido pela STMicroelectronics.

Dê “OK” e “Appy”. É feita, então, a construção automática do índice (C/C++ index) de todos os
arquivos, definições, declarações, e símbolos presentes no projeto, mantidos pelo STM32CubeIDE,
para que todos os arquivos de cabeçalho na pasta passam a ser disponibilizados ao projeto.

3. Quando concluída a reconstrução, aparecerá o caminho inserido na lista da pasta “Includes” na
vista “Project Explorer”. Precisamos ainda incluir com “Add” o caminho da pasta que contém o
arquivo “core_cm7.h”. Este arquivo contém as definições, declarações e símbolos relacionados ao
núcleo Cortex-M7.

Dê “OK”, “Apply and Close” e confirme “Rebuild index”.

4. Ao final do procedimento, temos duas novas pastas incluídas na pasta “Includes” que nos
permitem usar mnemônicos padrão para manipular os registradores do microcontrolador.

5. Vamos incluir o arquivo de cabeçalho “stm32h7a3xxq.h” no “main.c”. Adicione o comando
“#include <stm32h7a3xxq.h>”, conforme a figura abaixo. Depois, clique com o botão direito sobre
o nome “stm32h7a3xxq.h” para habilitar um pop-up menu. Selecione “Open Declaration” no menu.
Alternativamente, pode-se dar um clique simples com o botão esquerdo para colocar o cursor sobre
o nome do arquivo e pressionar F3.

Ao tentar abrir o arquivo, aparecerão dois avisos sobre o tamanho do arquivo. Dê “OK” e, em
seguida, desmarque a caixa “Disable editor live parsing (...)” e clique em “Apply and Close”.

5. Observando o arquivo “stm32h7a3xxq.h”, podemos ver que todos os módulos X integrados no
microcontrolador STM32H7A3ZIT6-Q são abstraídos em estruturas (“structs”), onde cada elemento
representa um registrador específico. Essas estruturas são então redefinidas para novos tipos
X_DefType utilizando a diretiva “#typedef”. Por exemplo, a estrutura formada pelos registradores
do RCC é redefinida como RCC_DefType, enquanto a estrutura dos registradores GPIOx é
redefinida como GPIO_DefType

Redefinindo os intervalos de endereços de memória para os tipos das estruturas, podemos acessar
diretamente os registradores mapeados na memória usando os endereços base dos blocos de

memória como ponteiros. Esses endereços são definidos por macros, como ((RCC_TypeDef *)
RCC_BASE) e ((GPIO_TypeDef *) GPIOB_BASE), em “stm32h7a3xxq.h” e são referenciados
pelas macros RCC e GPIOB, respectivamente. Isso evita o uso direto dos endereços-base no código.

Os endereços-base, GPIOB_BASE e RCC_BASE, são macros definidas no mesmo arquivo.

A definição de GPIOB_BASE e RCC_BASE envolve a macro SRD_AHB4PERIPH_BASE, que é
também definida no mesmo arquivo.

A definição da macro SRD_AHB4PERIPH_BASE depende, por sua vez da macro PERIPH_BASE.

A partir do endereço 0x40000000 da macro PERIPH_BASE, é possível retroceder pelas macros que
passamos para encontrar os endereços-base das macros RCC_BASE e GPIOB_BASE.

5. Com essa abordagem, podemos escrever o nosso código sem a necessidade de criar variáveis
adicionais para acessar os registradores; podemos utilizar diretamente os mnemônicos definidos no
arquivo de cabeçalho “stm32h7a3xxq.h”.

6. Além dos endereços-base de cada módulo, o arquivo “stm32h7a3xxq.h” inclui diversas macros
para a configuração individual dos bits, o que torna o código mais legível. A figura a seguir ilustra
as macros associadas à diferentes máscaras de bits do registrador MODER de um módulo GPIOx.
Por exemplo, a macro GPIO_MODER_MODE0_Msk define a máscara 0x00000003, enquanto a
macro GPIO_MODER_MODE4_Msk define uma máscara 0x00000300.

Vamos substituir as máscaras usadas nos comandos de configuração dos registradores pelas
máscaras definidas na CMSIS.

7. Faça “Build” e execute o projeto para certificar se o LED verde pisca.

8. Agora altere o programa que pisque o LED amarelo para uma versão que usa a interface CMSIS.
Depois exporte o projeto em um arquivo ZIP para ser incluído no relatório.

DICAS: Além de mudar os nomes dos registradores para RCC->##### ou GPIOE->#####, as
máscaras numéricas devem ser substituídas pelas máscaras da CMSIS.

PYTHON E C

Python é conhecido por sua sintaxe clara e legível, o que facilita a escrita e manutenção do código.
Em contraste, a sintaxe de C é mais complexa e detalhada, exigindo mais atenção aos detalhes.
Python é uma linguagem interpretada de alto nível para propósito geral. Ele foi desenvolvido
pelo Guido van Rossum em 1989 com o objetivo de ter uma linguagem que apresenta uma sintaxe
intuitiva, similar à linguagem natural inglês, sem precisar se preocupar com a tipagem e o
armazenamento de dados na memória como a lingagem C. A linguagem C é uma linguagem
compilada de médio nível, também para propósito geral. Foi inventada pelo Dennis Ritchie em
Bell Laboratories entre 1972–73 para programar sistemas operacionais que antes eram
implementados com uma linguagem de baixo nível, o assembly. O sistema operacional Unix dos
minicomputadores como DEC DPD7 foi integralmente implementado com linguagem C.

Uma linguagem compilada é aquela que requer a conversão dos códigos de um programa em código
binário específico da máquina antes de sua execução. Por outro lado, uma linguagem interpretada é
aquela cujas instruções são traduzidas em tempo de execução, referenciando funções
pré-implementadas (built-in functions) e valores de seus argumentos. Devido à ausência dessa etapa
de interpretação durante a execução, o tempo de execução de um programa compilado é menor do
que o de um programa interpretado, resultando em um melhor desempenho temporal.

Tipicamente, uma cadeia de ferramentas, conhecida como toolchain, é utilizada para converter
códigos em linguagem C, armazenados em arquivos com extensão “.c”, em um arquivo executável
com extensão “.elf” (executable and linkable format) numa arquitetura ARM. Esse processo
envolve várias etapas: um pré-processador traduz as diretivas de C em arquivos com extensão “.i”,
que contêm apenas instruções puras de C; um compilador converte essas instruções puras de C em
arquivos-objeto com extensão “.o”, contendo instruções de máquina do processador-alvo; e um
ligador (linker) junta as instruções de diferentes arquivos para construir um arquivo executável com
extensão “.elf”. Em cada estágio, diferentes tipos de erros podem ser gerados, e é necessário
corrigí-los antes de avançar para a próxima etapa. Em contraste, os erros em Python são detectados
durante a interpretação das instruções no momento da execução, já que todas as funções
pré-implementadas foram previamente testadas.

Ambas as linguagens compartilham estruturas de controle semelhantes, como comandos de controle
de fluxo de iterações (“for”, “while”), comandos de quebra de fluxo (“break”, “continue”), e
comandos condicionais (“if”, e “if-elif-else” em Python ou “if-else if-else” em C). Somente em
Python 3.10 foi introduzido o comando de alternativas “switch-case” de C. Tanto Python quanto C
permitem a definição e chamada de funções, promovendo a modularidade do código. Ambas as
linguagens incluem operadores aritméticos (+,-,*,/), operadores lógicos (&&, ||, ! em C; “and”, “or”,
“not” em Python), operadores relacionais (<, <=, >, >=, ==, !=), operadores lógicos bit-a-bit (&, |,
~), deslocamentos de bits (<<, >>) e atribuição (= em C; := a partir de Python 3.8).

Python usa tipagem dinâmica, o que significa que os tipos de dados são verificados em tempo de
execução. Já em C, a tipagem é estática, e os tipos de dados são verificados em tempo de
compilação, exigindo declaração explícita de variáveis. Uma atenção especial deve ser dada aos
tipos de dados dos resultados de uma operação em C. Os tipos de dados dos resultados, sejam
inteiros ou em ponto flutuante, dependem dos tipos dos operandos. Por exemplo, uma operação
entre dois operandos inteiros sempre resulta em um valor inteiro, mesmo que o resultado
matemático seja uma fração. Assim, a operação 1/2 resulta em 0, em vez de 0.5. Isso ocorre porque
a divisão inteira trunca a parte fracionária do resultado para gerar um tipo de dado consistente com
os operandos. Em contraste, Python usa tipagem dinâmica, o que significa que os tipos de dados dos
resultados se ajustam dinamicamente conforme necessário. Em Python, a operação 1/2 resulta em
0.5, pois a divisão entre inteiros retorna um número de ponto flutuante. Python ajusta
automaticamente os tipos de dados dos operandos e resultados durante a execução, permitindo
maior flexibilidade e evitando a necessidade de conversões explícitas.

Tanto C quanto Python têm sistemas de escopo que determinam a visibilidade de variáveis em
diferentes partes do código. Em C, as variáveis possuem escopo estático, o que significa que podem

ser globais ou locais a uma função específica. Variáveis globais, declaradas fora de todas as funções
dentro de um arquivo, são acessíveis em todo o programa, enquanto variáveis locais existem apenas
dentro da função onde são definidas. Em contraste, Python utiliza um sistema de escopo baseado
em indentação e na estruturação de blocos por meio de espaços em branco, como tabulações ou
espaços. As variáveis em Python são dinamicamente tipadas e têm escopo local quando definidas
dentro de uma função. Variáveis globais em Python são declaradas fora de todas as funções do
programa ou explicitamente marcadas como globais dentro de uma função para serem acessadas
globalmente.

C possui o conceito de conversão implícita de tipos, que é aplicado em operações envolvendo
operandos de tipos de dados distintos. Neste caso, os operandos são promovidos a um tipo de dados
comum, mais abrangente, antes da execução da operação, conforme a hierarquia de “abrangência”
mostrada na figura. Por exemplo, se um inteiro e um ponto flutuante são usados em uma operação,
o inteiro é automaticamente promovido a ponto flutuante para garantir que a operação seja realizada
corretamente. No entanto, C não consegue expandir o espaço de memória previamente alocado pelo
compilador quando uma operação requer mais bits. Por exemplo, ao fazer um deslocamento à
esquerda de um bit no valor 0b11000000 de uma variável do tipo de dados de 8 bits (“char” ou
“bool”), o resultado é 0b10000000, pois o valor excedente é descartado. Em contraste, Python, sem
uma tipagem previamente fixa, consegue realocar o espaço de memória dinamicamente, permitindo
representar 0b11000000 sem perda de dados.

Em termos de gerenciamento de memória, Python cuida disso automaticamente através de um
coletor de lixo, enquanto C requer que os programadores gerenciem a alocação e liberação de
memória manualmente, utilizando funções como “malloc” e “free”. Python possui uma vasta
biblioteca padrão e suporte a muitos módulos externos, facilitando o desenvolvimento rápido de

https://www.geeksforgeeks.org/type-conversion-c/

aplicações. C também tem bibliotecas, mas o desenvolvimento pode exigir mais código manual e
integração.

Apesar dessas semelhanças, as diferenças em gestão de memória, tipagem, tipos de erros e
execução influenciam significativamente a escolha entre Python e C, dependendo das necessidades
do projeto e do nível de controle requerido sobre o hardware. Devido à facilidade no gerenciamento
de memória, no tratamento de erros, na geração de código executável e na tipagem dinâmica,
Python tem se tornado popular para prototipagem rápida e provas de conceito no desenvolvimento
de projetos em geral. No entanto, essas facilidades comprometem o desempenho e o determinismo
do sistema. Em aplicações onde esses fatores são essenciais, como em sistemas embarcados, a
linguagem C continua sendo a preferida.

DETALHES DA LINGUAGEM C

A linguagem C oferece uma proximidade significativa com a linguagem assembly através de
operadores entre operandos, manipulação direta de memória e declaração explícita de variáveis. Sua
capacidade de organizar registradores dos módulos usando estruturas (“struct”), como a
disponibilidade de ponteiros, a tornam especialmente adequada para programação de sistemas
embarcados, onde o controle detalhado sobre o hardware é essencial. Ao mesmo tempo, C fornece
um nível de abstração suficiente para facilitar a criação de código modular e reutilizável,
equilibrando eficiência e legibilidade.

Em C, os operadores são muito semelhantes aos usados em assembly, permitindo manipulações
diretas de bits e bytes. A seguinte tabela mostra a correspondência direta entre os operadores
lógico-aritméticos e relacionais da linguagem C e algumas instruções do repertório ARM Thumb-2
do Cortex-M7.

C Descrição ARM Thumb-2 (Cortex-M7)

+ Adição ADD, VADD

- Subtração SUB, VSUB

* Multiplicação MUL, VMUL

/ Divisão SDIV, UDIV, VDIV

% Resto da divisão -

++ Incremento ADD (imediato)

-- Decremento SUB (imediato)

& E lógico bit a bit AND

| Ou lógico bit a bit ORR

^ Ou exclusivo bit a bit EOR

~ Complemento de bits MVN

<< Deslocamento para esquerda LSL

>> Deslocamento para direita LSR

&& E lógico CMP e bits de condição

|| Ou lógico CMP e bits de condição

! Negação lógica VNEG

== Igual a CMP e bits de condição

!= Não é igual a CMP e bits de condição

> Maior que CMP e bits de condição

< Menor que CMP e bits de condição

>= Maior ou igual a CMP e bits de condição

<= Menor ou igual a CMP e bits de condição
Vale destacar que a linguagem C suporta versões contraídas de operações lógico-aritméticas,
chamadas de operadores compostos. Estes operadores permitem realizar operações aritméticas e
lógicas de forma mais compacta e eficiente, combinando a operação e a atribuição em uma única
expressão. Por exemplo, ao invés de escrever “x = x +5;”, vale também “x += 5;”.

A declaração de variáveis em C é explícita e requer que o programador especifique o tipo de dados
e o nome da variável. Isso é semelhante à reserva de espaço de memória em assembly, onde cada
espaço é definido por diretivas como “.byte” (1 byte) e “.word” (4 bytes em ARM), que determinam
o tamanho do espaço a ser alocado e, muitas vezes, inicializam o espaço com um valor específico.

Em C, os tipos de dados não apenas definem como os dados são armazenados na memória, mas
também como são interpretados pelo compilador. Eles determinam quais operações matemáticas e
lógicas podem ser aplicadas aos dados. Todas as variáveis utilizadas devem ser previamente
declaradas com um tipo de dados para que o compilador possa reservar o espaço necessário na
memória e garantir que as operações apropriadas possam ser realizadas sobre elas.

Os tipos de dados podem ser divididos em tipos básicos e tipos derivados. Os tipos de dados básicos
incluem:

int: Representa números inteiros.

char: Armazena caracteres individuais, como letras e símbolos. Internamente, é tratado como um
número inteiro de 8 bits..

float: Representa números de ponto flutuante de precisão simples. É usado para valores com casas
decimais com até 8 bits de expoente.

double: Representa números de ponto flutuante de dupla precisão com até 11 bits de expoente.

void: Representa um tipo de dado que não possui valor ou tipo específico. É utilizado para criar
funções que não precisam retornar um valor ou para trabalhar com ponteiros de tipos indefinidos.

Para todas as variáveis de tipos de dados que possuem valor, é possível acessar seu endereço de
memória usando o operador ‘&’. Por exemplo, para uma variável ‘a’ declarada como do tipo “char”
com o comando “char a;”, podemos obter o endereço de ‘a’ utilizando a sintaxe “&a”.

Os tipos derivados permitem estruturar dados de maneira mais complexa e são construídos a partir
dos tipos básicos. Entre os tipos de dados derivados estão:

Arranjos: Coleções de elementos do mesmo tipo, acessados por um índice. São tipos derivados
porque são construídos a partir de tipos básicos.

Structs: Estruturas que permitem combinar diferentes tipos de dados sob um único nome. Cada
elemento dentro de uma estrutura pode ter um tipo diferente. Para acessar esses elementos,
utiliza-se o operador ‘->’ quando a variável é um ponteiro do tipo struct, e o operador ‘.’ quando é
um valor direto do tipo struct.

Union: Similar a uma struct, mas todos os elementos compartilham o mesmo espaço de memória. A
união é útil quando se deseja economizar espaço, mas só se precisa armazenar um tipo de dado por
vez.

Enumerações (enum): Define um novo tipo de dados que pode assumir um número limitado de
valores, que são enumerados explicitamente.

Ponteiros: Variáveis que armazenam endereços de memória alocados para um tipo de dado
específico. Eles permitem a manipulação direta da memória e são essenciais para a alocação
dinâmica de memória, bem como para a passagem de parâmetros por endereço. Para declarar um
ponteiro para um tipo de dado X, usamos a sintaxe “X *”. Por exemplo, para declarar ponteiros para
os tipos de dados “int” e “float”, utilizamos “int *” e “float *”, respectivamente. Pode-se também
acessar o conteúdo de um ponteiro, usando o operador ‘*’. Por exemplo, para um ponteiro ‘b’
declarado como do tipo “char *” com o comando “char *b;”, podemos obter o conteúdo de ‘b’
utilizando a sintaxe “*b”.

C suporta a palavra-chave typedef, interpretada diretamente pelo compilador como parte da sintaxe
da linguagem. Esta palavra é usada para criar novos nomes para tipos de dados existentes. Isso pode
ajudar a tornar o código mais legível e portátil.

Em C, os qualificadores de tipos de dados são palavras-chave que modificam os comportamentos
padrão dos tipos de dados básicos. Eles são usados para especificar certas propriedades ou
restrições adicionais sobre como os dados devem ser tratados ou armazenados pelo compilador.
Seguem-se os principais qualificadores:

const: é um modificador de tipo que indica que o valor de uma variável não pode ser alterado após
sua inicialização. Isso significa que uma vez atribuído um valor, esse valor não pode ser modificado
através dessa variável.

volatile: é um modificador de acesso, indicando que o valor de uma variável pode ser alterado
inesperadamente por processos externos ao programa. Isso previne otimizações de compilador que
poderiam, de outra forma, assumir que o valor não muda. É frequentemente usado para variáveis
acessadas por múltiplas threads ou por dispositivos de hardware.

signed e unsigned: são modificadores que determinam como o bit mais significativo dos tipos de
dados numéricos inteiros (int, char, short, long) deve ser interpretado: como um bit de sinal
(“signed”) ou um bit numérico (“unsigned”). Por padrão, os tipos inteiros em C são “signed” (com
sinal). Portanto, “unsigned” (sem sinal) deve ser utilizado explicitamente quando se deseja trabalhar
apenas com números não negativos.

static: é um modificador do escopo e a duração de vida de uma variável. Em vez de ser criada e
destruída a cada chamada de função, uma variável static persiste durante a execução do programa,
mas apenas acessível na função em que ela é declarada.

Em C, valores inteiros podem ser representados em bases binária, decimal, octal e hexadecimal. A
decimal é a base padrão e usa os dígitos de 0 a 9. A binária, que só usa os dígitos 0 e 1, é prefixada
por “0b”. A octal utiliza os dígitos de 0 a 7 e é prefixada com “0”. A hexadecimal usa os dígitos de
0 a 9 e as letras de ‘A’ a ‘F’ (ou ‘a’ a ‘f’), sendo prefixada com “0x” ou “0X”. Por exemplo, 10,
0b1010, 012 e 0xA são representações do mesmo valor numérico em diferentes bases em C. Um
número em ponto flutuante pode ser representado em notação decimal (por exemplo, 4.15) ou em
notação científica (por exemplo, 0.415e1, que equivale a 4.15). Um caractere, tipicamente um valor
em ASCII, é escrito entre aspas simples, como ‘A’ e ‘a’. Uma string em C é um arranjo de
caracteres terminado com um caractere nulo (‘\0’). Pode ser escrita entre aspas duplas. Por
exemplo, a string “Bom dia!” é representada como um arranjo de caracteres através da declaração:
“char str[9]= “Hello”;”.

O uso de funções em linguagens de programação não só melhora a estrutura e organização do
código, mas também promove a modularidade, a reutilização de código, a abstração de
complexidade e facilita a manutenção do software. A estrutura básica de uma função em C
compreende a sua declaração e definição. Na declaração, especificamos o tipo de dado que a função
retorna, o nome da função (único dentro do escopo onde é definida), e a lista de parâmetros que são
variáveis que a função recebe como entrada e podem ser modificadas. Os parâmetros são opcionais
e podem ser de qualquer tipo válido na linguagem. Mesmo sem parâmetros, os parênteses vazios
ainda são necessários. A definição da função, por sua vez, consiste em três partes: declaração de
variáveis locais, execução de comandos que operam sobre essas variáveis, e retorno de um valor

<tipo_de dado_retorno> <nome_da_funcao> (<lista_de_parâmetros>) {
// Declaração de variáveis locais
// Execução de comandos
// Retorno de valor (se houver)
}

Em C, o mecanismo de chamada de funções definidas segue os seguintes passos básicos:
chamada da função: para chamar uma função, utiliza-se seu nome seguido por parênteses
contendo os argumentos necessários.
passagem de parâmetros: os parâmetros podem ser passados para a função de duas maneiras: por
valor do conteúdo da memória (dado) e por valor de endereço da memória (endereço). Quando se
passa por valor, o valor real do argumento é copiado para o parâmetro da função. Modificações no
parâmetro dentro da função não afetam o argumento original. E quando se passa por endereço, ou
ponteiro, o endereço do argumento é passado como parâmetro para a função. Isso permite à função
acessar e modificar diretamente o valor do argumento original na memória.
execução da função: dentro da função, os parâmetros podem ser manipulados usando diretamente a
variável se a passagem é por valor, ou a variável precedido de ‘*’ se é por valor de endereço.

C é equipada com diretivas de pré-processador precedidas por ‘#’, ou mecanismos que ajudam a
definir constantes, incluir arquivos de cabeçalho, e criar novos tipos de dados:

#define: é usada para definir macros, que são substituições de texto realizadas pelo pré-processador
antes da compilação. Pode ser usada para criar constantes ou macros mais complexas com
argumentos.

#include: é usada para incluir o conteúdo de um arquivo de cabeçalho no código fonte. Isso permite
a reutilização de código e a separação de declarações e definições em diferentes arquivos.

#ifdef, #ifndef, #if, #else, #elif, #endif: essas diretivas são usadas para incluir ou excluir partes do
código com base em condições, permitindo a compilação condicional. Isso é particularmente útil
para configurar compilação específica para diferentes ambientes ou configurações de hardware.

Em C, o código é tipicamente dividido em arquivos de código-fonte (de extensão .c) e arquivos de
cabeçalho (de extensão .h). Arquivos de código-fonte em C são arquivos que contêm a
implementação de um procedimento, incluindo definições de funções, variáveis, e a lógica do
programa. Arquivos de cabeçalho geralmente contêm declarações de funções, variáveis globais,
macros, e tipos de dados (structs, enums, typedefs) que podem ser usados em múltiplos arquivos de
código-fonte. Isso permite que diferentes arquivos de código-fonte compartilhem essas declarações
sem duplicação. Essa divisão serve para organizar e modularizar o código, facilitando a reutilização
e a manutenção.

À medida que avançamos ao longo deste curso, exploraremos o uso dessas funcionalidades de C
para otimizar e configurar nossos projetos de acordo com os requisitos específicos de hardware e
software.

PROGRAMAÇÃO C EM MICROCONTROLADORES

Em programação de microcontroladores, é comum usar os tipos de dados unit*_t e int*_t (onde *
representa o tamanho em bits, como uint8_t, int16_t, etc.) em vez do tipo de dados nativo int. Esses
tipos são definidos no cabeçalho <stdint.h> da biblioteca padrão do C. A portabilidade é um dos
principais motivos. Usar esses tipos garante que o tamanho do tipo de dados será o mesmo em
qualquer plataforma. Isso é crucial na programação de microcontroladores, onde o tamanho dos
tipos de dados pode variar entre diferentes arquiteturas. O programador pode prever exatamente
quantos bits serão usados para armazenar uma variável, o que é essencial para manipulação dos
registradores do microcontrolador e protocolos de comunicação. O controle e a precisão são
também importantes. Em sistemas embarcados, a memória é um recurso escasso. Usar tipos de
dados com tamanho específico ajuda a gerenciar a memória de maneira eficiente, garantindo que
não se use mais memória do que o necessário e evitando problemas de overflow. Operações bit a bit
requerem precisão no tamanho dos dados para configurações a nível de bits.

A conversão explícita em C, também conhecida como casting ou typecast, permite ao programador
informar ao compilador como interpretar um determinado valor. Isso é particularmente útil quando
é necessário diferenciar entre valores inteiros e endereços de memória, duas entidades que, em
sistemas embarcados, frequentemente compartilham o mesmo espaço de bits, mas têm significados
distintos. Em um sistema de microcontrolador, essa distinção é crucial para a manipulação direta
dos registradores de microcontrolador, cujos endereços são representados por valores inteiros. Por

exemplo, para explicitar que 0x58024540 é um endereço de memória, podemos usar o comando
“(uint32_t *)0x58024540” para converter o valor 0x58024540, que por padrão é do tipo “uint32_t”,
para um tipo “uint32_t *”, indicando que se trata de um endereço de memória cujo conteúdo ocupa
4 bytes.

Para minimizar a quantidade de registradores nos periféricos, vários bits funcionalmente
independentes são compactados em um único registrador, de modo que as operações devam ser
realizadas bit a bit. Podemos construir diferentes máscaras de bits que nos permitem manipular
alguns bits específicos de um registrador sem afetar os outros. Denominamos essa operação de
mascaramento. Três das máscaras de bits mais utilizadas na programação de microcontroladores
são:
máscara de OU (OR lógico, bit a bit) ou máscara de 1: seta um ou mais bits em 1 sem afetar os
demais. A máscara deve ter valor ‘1’ nos bits correspondentes aos bits que se deseja setar.
máscara de AND (AND lógico, bit a bit) ou máscara de 0: reseta um ou mais bits em 0 sem afetar
os demais. A máscara deve ter valor ‘1’ nos bits correspondentes aos bits que não se deseja alterar.
A máscara deve ter valor ‘0’ nos bits correspondentes aos bits que se deseja resetar.
máscara de OU exclusivo (XOR lógico, bit a bit): inverte um ou mais bits sem afetar os demais. A
máscara deve ter valor ‘1’ nos bits correspondentes aos bits que se deseja inverter.

Por exemplo, para configurar o pino PB0 como um pino de saída, é necessário definir os bits [1:0]
do registrador GPIOB_MODER como “01”. Isso é feito através de duas operações lógicas bit a bit:
primeiro, aplicando uma máscara AND com 0xFFFFFFFC para limpar os dois bits alvo; em
seguida, utilizando uma máscara OR com 0x00000001 para definir o bit “0” como “1”:
GPIOB_MODER &= 0xFFFFFFFC;
GPIOB_MODER |= 0x00000001;
Em vez de realizar operações bit a bit separadas, podemos também criar uma palavra com todos os
bits de controle configurados e fazer uma única atribuição dos bits quando o acesso de escrita
simultâneo desses bits é imprescindível:
uint32_t tmp;;
tmp = GPIOB_MODER;
tmp &= 0xFFFFFFFC;
tmp |= 0x00000001;
GPIOB_MODER = tmp;

Em programação de microcontroladores, uma prática comum é a abstração dos registradores de um
módulo, que são mapeados em um espaço contíguo de endereços de memória, utilizando a estrutura
de dados “struct” em C. Essa técnica organiza de forma clara e acessível os registradores,
facilitando o desenvolvimento e a manutenção do código. Vamos considerar a definição de uma
“struct” no arquivo de cabeçalho <stm32ha3xxq.h> do padrão de interface CMSIS (do inglês
Cortex Microcontroller Software Interface Standard). Aqui está um exemplo de definição de uma
“struct” para o módulo GPIO:

typedef struct {
__IO uint32_t MODER; /*!< GPIO port mode register, Address offset: 0x00 */

__IO uint32_t OTYPER; /*!< GPIO port output type register, Address offset: 0x04 */
__IO uint32_t OSPEEDR; /*!< GPIO port output speed register, Address offset: 0x08 */
__IO uint32_t PUPDR; /*!< GPIO port pull-up/pull-down register, Address offset: 0x0C */
__IO uint32_t IDR; /*!< GPIO port input data register, Address offset: 0x10 */
__IO uint32_t ODR; /*!< GPIO port output data register, Address offset: 0x14 */
__IO uint32_t BSRR; /*!< GPIO port bit set/reset, Address offset: 0x18 */
__IO uint32_t LCKR; /*!< GPIO port configuration lock register, Address offset: 0x1C */
__IO uint32_t AFR[2]; /*!< GPIO alternate function registers, Address offset: 0x20-0x24 */
} GPIO_TypeDef;

Esta “struct”, nomeada como GPIO_TypeDef, agrupa todos os registradores do módulo GPIO, que
são mapeados em um espaço contíguo de memória. Cada elemento da “struct” representa um
registrador específico do módulo GPIO. Alguns deles já vimos no Roteiro 1:
__IO uint32_t MODER: Registrador que controla se cada pino do módulo é configurado como
entrada, saída, função alternativa ou analógica. O offset de endereço é 0x00.
__IO uint32_t OTYPER: Registrador que define se as saídas são push-pull ou open-drain. O offset
de endereço é 0x04.
__IO uint32_t OSPEEDR: Registrador que configura as velocidades de comutação dos pinos de
saída. O offset de endereço é 0x08.
__IO uint32_t PUPDR: Registrador que configura os resistores de pull-up e pull-down para os
pinos de entrada. O offset de endereço é 0x0C.
__IO uint32_t IDR: Registrador de dados de entrada do módulo GPIO, utilizado para ler o estado
dos pinos configurados como entradas. O offset de endereço é 0x10.
__IO uint32_t ODR: Registrador de dados de saída do módulo GPIO, utilizado para escrever os
valores nos pinos configurados como saídas. O offset de endereço é 0x14.
__IO uint32_t BSRR: Registrador que permite a manipulação atômica dos pinos, configurando ou
resetando individualmente os pinos do módulo. O offset de endereço é 0x18.
__IO uint32_t LCKR: Registrador de bloqueio de configuração do módulo GPIO, utilizado para
bloquear a configuração dos pinos, prevenindo modificações acidentais. O offset de endereço é
0x1C.
__IO uint32_t AFR[2] (0x58020420): Registradores de função alternativa do módulo GPIO, que
permitem configurar funções alternativas para os pinos, como UART, SPI, etc. Existem dois
registradores para acomodar até 16 pinos. O offset de endereço é 0x20-0x24.

Para usar a struct “GPIO_TypeDef” e acessar os registradores do módulo GPIO, geralmente um
ponteiro para a struct é definido, apontando para o endereço base do módulo GPIO. Por exemplo,
para o GPIOB, cujo intervalo de endereço é 0x58020400 - 0x580207FF,

https://www.dca.fee.unicamp.br/cursos/EA701/STM32/rm0455-stm32h7a37b3-and-stm32h7b0-value-line-advanced-armbased-32bit-mcus-stmicroelectronics.pdf#page=132

podemos converter explicitamente o valor 0x58020400 para um ponteiro de struct
“GPIO_TypeDef” da seguinte maneira

#define GPIOB ((volatile GPIO_TypeDef *) 0x58020400)

Com essa definição, podemos acessar os seus elementos, que são registradores do GPIOB, usando
mnemônicos como GPIOB->MODER, GPIOB->OTYPER ou GPIOB->ODR. Este é o padrão
adotado pelo CMSIS para criar os mnemônicos dos registradores de um microcontrolador:
<MÓDULO>-><Registrador>. Os arquivos de cabeçalho são amplamente utilizados em programas
de microcontroladores. Um exemplo notável são os arquivos do padrão de interface CMSIS, que
padroniza uma série de mnemônicos e facilita a programação dos microcontroladores.

Embora a programação em C seja muitas vezes suficiente e mais legível, é comum precisar de um
controle mais granular sobre o hardware e a execução do código em programação de
microcontroladores. Esse nível de controle pode ser obtido através da inserção de código assembly
diretamente em um programa C, utilizando o recurso de inline assembly, que é uma extensão
oferecida pelos compiladores. A sintaxe básica para o uso do inline assembly no GCC é

asm [qualificadores] (instruções_asm

: Operandos_de_saída

[: Operandos_de_entrada

[: Clobbers]])

O qualificador mais utilizado é o “volatile”, que indica ao compilador que o código assembly deve
ser tratado de forma especial, sem otimizações que possam alterar o comportamento pretendido. As
“instruções_asm” são fornecidas como strings literais e são passadas diretamente para o montador,
sem modificações pelo compilador. Para formatar o código assembly de maneira legível,
frequentemente utilizam-se caracteres de controle como ‘\n’ (nova linha) e ‘\t’ (tabulação), que

https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html

ajudam a separar e organizar as instruções no formato tradicional de assembly, garantindo que o
montador receba e interprete as instruções corretamente. O termo “Clobbers” se refere a uma lista
de registradores ou variáveis que o código assembly pode modificar durante sua execução. Em
inline assembly, isso é importante porque o compilador precisa saber quais recursos são alterados
pelo código assembly para gerar o código apropriado e evitar otimizações que poderiam resultar em
comportamento incorreto.

O formato de um operando de saída em Operandos_de_saída, associado ao nome <variávelC> em
C, é:

[[<nomeSimbólico]] “<restriçõesS>” (<variávelC>)

Para referenciar um operando usando o nome simbólico dentro das instruções em assembly,
devemos usar a notação %[nomeSimbólico]. Se um nome simbólico não for especificado
explicitamente, os operandos são referenciados por seus valores posicionais em
Operandos_de_saída, com %0 para o primeiro operando, %1 para o segundo, e assim por diante. A
lista <restrições> geralmente começa com =(para sobreescrever o valor existente) e é seguida por
restrições como r (registrador), m (endereço de memória) ou rm (preferência por registrador ou
memória). Essas restrições indicam ao montador onde alocar preferencialmente o operando durante
o processamento das instruções.

O formato de um operando de entrada em Operandos_de_entrada, associado ao nome <variávelC>
em C, é:

[[<nomeSimbólico]] “<restriçõesE>” (<variávelC>)

Assim como em operando de saída, podemos atribuir um nome simbólico a um operando em
Operandos_de_entrada ou usar valores posicionais a partir do último valor posicional atribuído aos
operandos de saída. A lista <restriçõesE> especifica os locais onde o operando pode ser armazenado
durante o processamento das instruções em assembly. Ela pode também conter o valor posicional de
um operando de saída, o que significa que o operando de entrada e o operando de saída
compartilham o mesmo local de armazenamento.

O formato de um operando de Cobbers é:

“<recursos>”

Aqui, um recurso é tipicamente um registrador (por exemplo, r0, r1 etc.), um espaço de memória
(memory) ou o registrador de status (cc) que é utilizado pelas instruções de assembly.

Abaixo está um exemplo de inline assembly que implementa a operação “counter = counter +1;” em
C. Neste código, “counter” é utilizado tanto como operando de entrada quanto de saída. No inline
assembly, isso é feito com o “counter” localizado no lado direito (entrada) e no lado esquerdo
(saída) da atribuição. Os parâmetros de entrada e saída são designados de forma distinta com base
na posição e na função do operando na lista de entrada e saída. Portanto,

%0 para se referir ao operando de saída (counter na primeira linha iniciada com ‘:’).
%1 para se referir ao operando de entrada que é a mesma variável (counter na segunda linha
iniciada com ‘:’).

Para garantir que o montador use o mesmo registrador para ambos os operandos, é através das
restrições especificamos o compartilhamento de registradores por esses operandos. A restrição do
operando “%0” é "=r", indicando que é um operando que pode ser sobreescrito e deve ser
armazenado preferencialmente em um registrador, sem especificar qual registrador. E a restrição do
operando “%1” é “0” indicando que usa o mesmo registrador usado pelo operando “%0”.

int counter=0;
for (;;) {
asm ("mov r1, %1 \n\t"

"add r1, #1 \n\t"
"mov %0, r1 \n\t"
: "=r" (counter)
: "0" (counter)
: "r1"

);
}

Ressalta-se aqui a ausência de funções de entrada e saída, como aquelas definidas no arquivo de
cabeçalho “stadio.h” da biblioteca padrão de C, em muitos ambientes de programação de
microcontroladores. Isso se justifica pela necessidade de uma interação mais direta e personalizada
com os periféricos do hardware. Diferentemente de sistemas operacionais de alto nível que
abstraem a comunicação com dispositivos através de funções genéricas, a programação de
microcontroladores exige que o desenvolvedor configure e gerencie diretamente os registradores
dos módulos de comunicação com os periféricos integrados nos microcontroladores. Essa
abordagem permite um controle mais preciso e eficiente sobre como os dados são lidos e escritos,
adaptando a comunicação às especificidades de cada dispositivo, como portas seriais, ADCs, ou
timers. Ao longo da disciplina, exploraremos como essas configurações diretas são essenciais para o
funcionamento adequado dos sistemas embarcados, mostrando a importância de entender a
comunicação em um nível mais detalhado do que o fornecido pelas abstrações de bibliotecas
padrão.

TOOLCHAINS

O STM32CubeIDE oferece um conjunto completo de ferramentas (toolchain) para geração de
códigos executáveis no microcontrolador STM32H7A3ZIT6-Q a partir de duas linguagens de
médio nível, C e C++. O GNU Arm Embedded Toolchain, desenvolvido e mantido pela FSF (do
inglês Free Software Foundation), é a ferramenta fundamental por trás desse processo. O
STM32CubeIDE inclui um editor de código-fonte baseado no Eclipse, um compilador cruzado
(cross compiler) GCC para ARM (“arm-none-eabi-gcc”), um montador cruzado (cross assembler)

https://developer.arm.com/downloads/-/gnu-rm

GCC para ARM (“arm-none-eabi-as”), um ligador cruzado (cross linker) GCC para ARM
(“arm-none-eabi-ld”) e um depurador cruzado (cross debugger) GDB (“arm-none-eabi-gdb”). O
termo "cruzado" (cross) é utilizado para indicar que a compilação, montagem e ligação dos
programas são realizadas em um computador, comumente denominado host, diferente do
microcontrolador-alvo, onde as instruções são efetivamente executadas. Da mesma forma, a
depuração do fluxo de controle executado no microcontrolador-alvo é realizada a partir de um host.

A figura a seguir ilustra as etapas de transformação dos endereços das instruções para três funções
diferentes de um mesmo programa ao longo de um toolchain. Cada função é compilada
separadamente, atribuindo a cada instrução um endereço de memória correspondente ao seu
deslocamento em relação ao endereço inicial (0) da função. O ligador então combina essas funções,
ajustando os endereços das instruções para garantir que não haja sobreposição e estabelecendo um
endereço inicial comum (0) para todas as funções. Além disso, o ligador inclui o código de
inicialização (Reset) recomendado pelo fabricante. Finalmente, com base na definição do layout da
memória, a ferramenta de carregamento transfere o código executável e os dados para as memórias
Flash e RAM do microcontrolador, preparando-o para execução.

