DISCIPLINA EA701

Introducao aos Sistemas Embarcados

ROTEIRO 2: Linguagem para programacao de microcontroladores

INTRODUCAO A PROGRAMACAO DO STM32H7A3 NO STM32CubelDE
USANDO LINGUAGEM C

Profs. Antonio A. F. Quevedo ¢ Wu Shin-Ting

FEEC / UNICAMP

Revisado em julho de 2024

This work is licensed under Creative Commons Attribution-NonCommercial-ShareAlike 4.0
International. To view a copy of this license, visit
https://creativecommons.org/licenses/by-nc-sa/4.0/

https://creativecommons.org/licenses/by-nc-sa/4.0/

INTRODUGAO 2

PROJETOS-EXEMPLO 3
Criando um novo projeto em C bare metal 4
Criando um novo projeto em C bare-metal usando CMSIS 15

PYTHONEC 22

DETALHES DA LINGUAGEM C 25

PROGRAMAGCAO C EM MICROCONTROLADORES 30

TOOLCHAINS 35

INTRODUCAO

No primeiro roteiro, vimos como um microcontrolador pode comandar seus periféricos, € como o
microcontrolador pode ser programado para executar automaticamente uma sequéncia de tarefas
através de linguagem assembly. Procuramos evidenciar que programar microcontroladores consiste
essencialmente em configurar sequencialmente os bits dos registradores desses microcontroladores,
permitindo que eles executem as fungdes desejadas. E uma habilidade fundamental para
engenheiros e entusiastas da eletronica, pois possibilita criar sistemas embarcados capazes de

realizar uma vasta gama de tarefas.

A programagdo de microcontroladores pode variar em termos de nivel de abstracdo. A manipulacdo
direta dos bits, frequentemente chamada de “escovar os bits”, envolve a configuragdo manual dos
bits nos registradores do microcontrolador. E a forma mais basica e de baixo nivel de executar
sequencialmente um procedimento, proporcionando total controle sobre o hardware. Embora seja
eficiente, pode ser propensa a erros e dificil de manter. A programac¢ao em assembly ¢ um nivel de
abstragdo ligeiramente superior & manipulagdo direta dos bits. Vimos no Roteiro 1 que assembly
permite escrever instrugdes que correspondem diretamente as operagdes humanas, oferecendo um
controle preciso sobre o hardware. Ela automatiza operagdes humanas, mas também pode ser

complexa e dificil de ler e manter, similar & manipulacdo direta dos bits.

Agora, vamos introduzir uma linguagem de programacio compilada, conhecida como C. Esta
linguagem pode ser considerada de nivel médio, e ¢ muito adequada para a programacgdo de
microcontroladores, pois tem uma sintaxe mais legivel e estruturada do que assembly , sem perder a
capacidade de controlar diretamente os registradores. Além disso, C ¢ amplamente suportada por
compiladores e ferramentas de desenvolvimento para microcontroladores. Nos ultimos anos, houve
esforcos significativos para trazer linguagens de alto nivel, como Python, para o dominio dos

sistemas embarcados. Frameworks, como MicroPython e CircuitPython, permitem programar

microcontroladores usando Python, oferecendo uma sintaxe amigével e rapida prototipagem. No
entanto, esses esfor¢os enfrentam desafios no estado da arte. Python é uma linguagem de
programacio interpretada e geralmente menos eficiente em termos de tempo de execucgdo e uso
de memoria em comparagdo com C. Isso pode ser um impedimento em sistemas embarcados
criticos, que exigem alto desempenho e comportamento deterministico. Além disso, o suporte para

diferentes microcontroladores e periféricos em Python ¢ mais limitado em comparagao com C.

Muitos drivers e bibliotecas ainda estdo em desenvolvimento ou nao estao disponiveis.

A relagdo entre C e Python € mais estreita do que se pode imaginar. As sintaxes das duas linguagens
apresentam muitas semelhangas, exceto nos operadores relacionados ao uso da memoria. Muitos
moédulos de Python sdo implementados em C ou C++. Por ser considerada uma camada que expde a
linguagem C/C++ de forma mais acessivel, muitos educadores, como Carl Burch, acreditam que
uma boa maneira de introduzir um programador a C ¢ comecar com Python. Este roteiro representa

uma transi¢ao de Python para C.

E importante mencionar que escolher a linguagem de programagcio certa para microcontroladores
depende das necessidades especificas do projeto, do nivel de controle requerido e das preferéncias
do desenvolvedor. Enquanto a programacdo em assembly proporciona total controle sobre o
hardware, a linguagem C oferece um equilibrio robusto entre controle e facilidade de uso. Por outro
lado, iniciativas para utilizar Python estdo em andamento e prometem simplificar ainda mais o
desenvolvimento, embora ainda enfrentam desafios significativos. Independentemente da
linguagem escolhida, o objetivo final permanece o mesmo: configurar os bits dos registradores do

microcontrolador para que ele realize as tarefas desejadas de maneira eficiente e confiavel.

Neste roteiro, exploraremos como utilizar a linguagem C para programar os bits dos
microcontroladores e como combinar cédigo em assembly com C. Abordaremos também como
aproveitar os recursos da linguagem para acessar registradores através de mnemonicos e

nomes mais legiveis, em vez de usar diretamente enderegos e bits dos registradores.

PROJETOS-EXEMPLO

No Roteiro 1, destacamos que, além da programag¢do em linguagem assembly, no nivel de méaquina,
¢ possivel utilizar a linguagem C, um nivel de programacgao intermediario, para programar a maioria
dos microcontroladores. Neste roteiro, exploraremos como realizar a programacdo nesse nivel e
analisaremos o suporte de depuracao oferecido por diversas ferramentas profissionais.

Criando um novo projeto em C bare metal

Neste projeto, configuraremos o microcontrolador para realizar a mesma tarefa de piscar o LED
verde abordada no Roteiro 1, mas utilizando a linguagem C para a programacao. Para desenvolver o

programa, siga os passos 1 a 7.

1. Deve-se iniciar um novo projeto, exatamente como foi feito no modulo anterior, selecionando a
placa NUCLEO e criando o projeto com o nome “PiscaBare”, lembrando de selecionar a opg¢ao

“Empty” no campo “Targeted Project Type”.

2. A seguir, o IDE entra na perspectiva de Programacio. A esquerda, temos o painel “Project
Explorer”, no qual podemos ver a estrutura de arquivos do projeto criado. Expanda todas as
subpastas clicando nos icones de seta (‘>’). A subpasta “Includes” geralmente contém arquivos de
cabecalho que sao incluidos globalmente em todo o projeto. Por padrdo, o IDE inclui arquivos de
cabecalho da biblioteca padraio C e ARM nesta pasta, que fornecem declaracdes de funcgdes,
varidveis globais, macros e tipos de dados.

A subpasta “Inc” € frequentemente utilizada para armazenar arquivos de cabegalho especificos do
projeto, como definicdes e interfaces relacionadas ao cddigo desenvolvido. A subpasta “Src”
contém os arquivos de codigo-fonte que sdo compilados durante a constru¢do do projeto. A
subpasta “Startup” inclui codigo-fonte em assembly, “startup_stm32h7a3zitxq.s”, responsavel pela
inicializagdo bdasica do microcontrolador, garantindo seu funcionamento correto. A subpasta
“Debug” armazena todos os arquivos intermedidrios relacionados a constru¢do do projeto. Além
disso, dois scripts, STM32H7A3ZITXQ_FLASH.Id e STM32H7A3ZITXQ_RAM.Id, especificam a
organizacdo dos codigos nas memorias Flash e RAM, ou apenas em RAMs, do microcontrolador
quando sao transferidos para ele.

v PiscaBare
~ [Includes
= C/ST/STM32CubelDE_1.16.0/STM32Cubel DE/plugins/com.st.stm32cube.ide.mcu.externaltools.gnu-tools-for-stm32.12.3.rel 1.win32_1.0.200.202406191623/tools/arm-none-eabi/include
(= C/ST/STM32CubelDE_1.16.0/STM32Cubel DE/plugins/com.st.stm32cube.ide.mcu.externaltools.gnu-tools-for-stm32.12.3.rel 1.win32_1.0.200.202406191623/to0ls/arm-none-eabi/include/newlib-nano
= C/ST/STM32CubelDE_1.16.0/STM32Cubel DE/plugins/com.st.stm32cube.ide.mcu.externaltools.gnu-tools-for-stm32.12.3.rel .win32_1.0.200.202406191623/tcols/lib/gcc/arm-none-eabi/12.3.1/include
(= C/ST/STM22CubelDE_1.16.0/STM32Cubel DE/plugins/com.st.stm32cube.ide. mcu.externaltools.gnu-tools-for-stm32.12.3.rel 1.win32_1.0.200.202406191623/tools/lib/gcc/arm-none-eabi/12.3.1/include-fixed
= PiscaBare/Inc
= Inc

o syscalls.C

Lg sysmem.c
~ (2 Startup
startup_stm32h7a3zitxqg.s
v = Debug
&= Src
(= Startup
® makefile
= objectslist
& objects.mk
& sources.mk
= PiscaBare Debug.launch
u STM32H7A3ZITXQ FLASH.Id
w STM32HTA3ZITXQ_RAM.Id

Dé um duplo-clique no arquivo “main.c” na sub-pasta “Src” para abri-lo no editor de texto interno
do IDE.

3. Agora vamos criar um programa em C que faz o LED verde da placa piscar, semelhante ao
programa em assembly descrito no Roteiro 1. Em vez de usar diretivas de assembly, usaremos
comandos em linguagem C para configurar os mesmos bits nos mesmos registradores. Para isso,

declararemos varidveis para os enderecos dos registradores, permitindo que possamos aplicar
operacdes sobre eles. Em vez da diretiva “.word”, declaramos quatro varidveis: RCC_AHB4ENR,
GPIOB_MODER, GPIOB_OTYPER e GPIOB_ODR, todas do tipo “uint32_t *” (ponteiro para
valores inteiros de 32 bits). Essas varidveis sdo globais, porque sdo declaradas fora do escopo da
funcao “main”.

7z

Definimos uma macro ITERACOES para representar a constante 500000, que € substituida
literalmente no cédigo antes da compilagdo. Durante a compilagdo, o compilador C alocard
automaticamente um espago de memoria para armazenar o valor da constante 500000. Nao é
necessario alocd-lo explicitamente como em assembly. Note que usamos uma conversao explicita
dos valores numéricos dos enderecos dos registradores com (uint32_t *), como em (uint32_t
*)58024540, para que sejam tratados como endere¢os de memoria. Além disso, o tipo de ponteiro

“uint32_t *” € qualificado com “volatile” para indicar que o contetido desses registradores pode ser
alterado por eventos externos ao fluxo de controle do processador.

Assembly C
104 73 #includ tdint.h
. . 19 #include <stdint.h>
:85 .align 4 6
186 RCC_AHBAENR : 21 #if ldefined(_ SOFT_FP_) & defined(_ ARM FP)
187 word BAx58024548 222 #warning "FPU is not initialized, but the project is compiling for an FPU.
108 GPIOB_MODER: 23 #endif

24

1es -word ©x58020400 25 volatile uint32 t *RCC_AHBAENR

((uint32_t *)ex58024540);

110 GPIOB_OTYPER: 26 velatile uint32_t *GPIOB_MODER = ((uint32_t *)0x58020400);
111 .word 0x58020404 27 welatile uint32_t *GPIOB_OTYPER = ((uint32_t *)@x58020404);
1172 GPIOB ODR: 28 volatile uint32 t *GPIOB ODR = ((uint32 t *)@x58020414);
11 o 29
_‘73 -word 0x58020414 30 #define ITERACOES 500000
114 ITERACOES: 2 |
115 word 500000 32=int main(void)
116 .end 33 1
- = 34 /* Loop forever */

35 for(;;);

36 }

a7

4. Em termos de operacdes logicas, devemos aplicar as seguinte operacdes sobre o contetido dos
registradores

RCC_AHB4ENR = RCC_AHB4ENR OR 0x00000002;

GPIOB_MODER = ((GPIOB_MODER OR 0x00000001) AND 0xFFFFFFFD);
GPIOB_OTYPER = GPIOB_OTYPER AND 0xFFFFFFFE;

LED apagado: GPIOB_ODR = GPIOB_ODR AND 0xFFFFFFFE;

LED aceso: GPIOB_ODR |= GPIOB_ODR OR 0x00000001;

Isso pode ser implementado diretamente em C usando as mascaras OR e/ou AND, tornando o
c6digo muito mais simples e legivel em comparagdo com a versdo em assembly:

*RCC_AHB4ENR = *RCC_AHB4ENR | 0x00000002;

*GPIOB_MODER = ((*GPIOB_MODER | 0x00000001) & 0xFFFFFFFD);
*GPIOB_OTYPER = *GPIOB_OTYPER & OxFFFFFFFE;

LED apagado: *GPIOB_ODR = *GPIOB_ODR & OxFFFFFFFE;

LED aceso: *GPIOB_ODR |=*GPIOB_ODR | 0x00000001;

32=int main(void)

33

34 *RCC_AHBAENR = *RCC_AHBAENR | 0x00000002;
35 *GPIOB_MODER = ((*GPIOB_MODER | 0x00000001) & @xFFFFFFFD);
36 *GPIOB_OTYPER = *GPIOB _OTYPER & @xFFFFFFFE;
37

38 /* Loop forever */

39 for(;;) {

40 *GPIOB_ODR = *GPIOB_ODR & OxFFFFFFFE;
a1 *GPIOB_ODR |= *GPIOB ODR | 0x00000001;
42 }

43}

5. Vamos incluir o bloco de instrugdes para aumentar o intervalo de tempo entre os dois estados do
LED verde usando o comando de lago “for” suportado por C. Este comando precisa de um iterador
que deve ser declarado antes do uso. Declaramos uma variavel “i” do tipo uint32 t.

32=int main(void)

33 4

34 *RCC_AHBAENR = *RCC_AHBAENR | 0x00000002;

35 *GPIOB_MODER = ((*GPIOB_MODER | 0x@0000001) & OxFFFFFFFD);
36 *GPIOB_OTYPER = *GPIOB_OTYPER & OxFFFFFFFE;

37

38 /* Loop forever */

39 uint32_t ij

46 for(;;) {

A1 *GPIOB_ODR = *GPIOB_ODR & OxFFFFFFFE;

42 for (i=0; i<500000; i++); // Gera delay
43 *GPIOB_ODR |= *GPIOB_ODR | 0x00000001;

A4 for (i=0; i<500000; i++); // Gera delay
45 1

46}

6. Nao se esqueca de salvar as modificagdes do arquivo (Ctrl-S ou o icone de salvar). Depois use o
icone de “martelo” para fazer o “Build”, ou seja, compilar os arquivos do projeto, realizar as
ligacoes entre eles e gerar o executdvel ‘“PiscaBare.elf” wusando o script
“STM32H7A3ZITXQ_FLASH.Id” de configuragdo do layout das instrugdes e dados na memoria.
Os passos de construcdo sao mostrados na janela “CDT Build Console.” Sdo 4 comandos de

compilacdo e 1 comando de linkagem.

22:46:25 **** Build of configuration Debug for project PiscaBare ****

make -j4 all

arm-none-eabi-gcc
arm-none-eabi-gcc
arm-none-eabi-gcc
arm-none-eabi-gcc

-mcpu=cortex-m7 -g3 -DDEBUG -c -x assembler-with-cpp -MMD -MP -MF"Startup/startup_stm32h7a3zitxq.d" -MT"Startup/startup_stm32h7a3zitxq.o" --
"../Src/main.c" -mcpu=cortex-m7 -std=gnull -g3 -DDEBUG -DSTM32 -DSTM32H7SINGLE -DSTM32H7 -DSTM32H7A3ZITxQ -DNUCLEO_H7A3ZI Q -c -I../Inc -0@
"../Src/syscalls.c” -mcpu=cortex-m7 -std=gnull -g3 -DDEBUG -DSTM32 -DSTM32H7SINGLE -DSTM32H7 -DSTM32H7A3ZITxQ -DNUCLEQ_H7A3ZI_Q -c -I../Inc
"../Src/sysmem.c" -mcpu=cortex-m7 -std=gnull -g3 -DDEBUG -DSTM32 -DSTM32H7SINGLE -DSTM32H7 -DSTM32H7A3ZITxQ -DNUCLEO_H7A3ZI Q -c -I../Inc -0

../Src/main.c:22:4: warning: #warning "FPU is not initialized, but the project is compiling for an FPU. Please initialize the FPU before use." [-Wcpp]
22 | #warning "FPU is pot initialized, but the project is compiling for an FPU. Please initialize the FPU before use.”

‘ A
-mcpu=cortex-m7 -T"E:\Ting\Projects\STM32Cube\EA701\2524\PisdaBare\STM32H7A3ZITXQ FLASH.1d" -Jkpecs=nos
arm-none-eabi-size PiscaBare.elf

arm-none-eabi-objdump -h -S PiscaBare.elf > "PiscaBare.list"
text data bss dec hex filename
1096 16 1568 2680 a78 PiscaBare.elf
Finished building: default.size.stdout

arm-none-eabi-gcc -df "PiscaBare.elf" @"objects.list"

Finished building tarPwi, PiscaBg

Finished building: PiscaBare.list

22:46:33 Build Finished. @ errors, 1 warnings. (took 7s.620ms)

7. Ap6s o “Build”, estamos prontos para carregar o programa na placa seguindo o layout definido
no script STM32H7A3Z1TXQ_FLASH.Id (default) e executéa-lo.

Podemos, no entanto, fazer alguma andlise antes da execucdo. No script
STM32H7A3ZITXQ_FLASH.Id, a funcdo “Reset_Handler” é definida como o ponto de entrada do
programa, ou seja, a primeira instru¢@o a ser executada apds um reset. O topo da pilha, _estack, fica
no endereco ORIGIN(RAM)+LENGTH(RAM) = 0x24000000 + 2' * 1024) = 0x24000000 +
0x100000 = 0x24100000. O tamanho minimo recomendado para a pilha, que armazena varidveis
locais, e para o heap, que armazena dados alocados dinamicamente durante a execuc¢do, sdo,
respectivamente, 0x400 bytes e 0x200 bytes.

33

34 /* Entry Point */

35 ENTRY(Reset_Handler)

i? /* Highest address of the user mode stack */

38 _estack = ORIGIN(RAM) + LENGTH(RAM); /* end of RAM */
39 /* Generate a link error if heap and stack don't fit into RAM */

48 _Min_Heap_Size = 0x200; /* required amount of heap */
41 _Min_Stack_Size = @x400; /* required amount of stack */
42

43 /* Specify the memory areas */

44 MEMORY

455§

46 ITCMRAM (xrw)} : ORIGIN = @x00000000, LENGTH = 64K
A7 FLASH (rx) : ORIGIN = @x08000000, LENGTH = 2048K
A8 DTCMRAML (xrw) : ORIGIN = 0x20000000, LENGTH = 64K

49 DTCMRAM2 (xrw) : ORIGIN = @x20010000, LENGTH = 64K
50 RAM (xrw) : ORIGIN = ©x24000000, LENGTH = 1024K
51 RAM_CD (xrw) : ORIGIN = @x30000000, LENGTH = 128K
52 RAM_SRD (xrw) : ORIGIN = 0x38000000, LENGTH = 32K

53 1}

54

Os enderecos do topo da pilha e da primeira instru¢do sdo carregados, respectivamente, nos
enderecos 0x80000000 e 0x80000004 ao carregarmos o c6digo executdvel para o microcontrolador.
Podemos constatar isso se habilitarmos a aba “Memory” (“Window” > “Show View” > “Memory”).

Monitors
@ 0x08000000

E possivel alterar o formato de apresentagdo dos byfes organizados na memdria. Ao clicar qualquer
dado renderizado, aparecerd um pop-up menu na aba “Memory”. Selecione “Format ...” e surgird a
seguinte janela para configurar a quantidade de byfes por linha e a quantidade de byfes por coluna.
Dé “OK” ap6s a configuragdo. O layout padrao exibe 16 bytes por linha, com os bytes agrupados em
blocos de 4. Para verificar a ordenacdo dos bytes na memoria com maior precisdo, utilize o

)=Variables ®e Breakpoints %7 Expressions i

110 1010
FIR]

Registers &7 Live Expressions @3 SFRs [Memory x

0|6 B

<= 3 % |0x08000000 : 0x8000000 <Hex Integer> X | 5= Mew Renderings...

Address 0-3 4-7 &-B
08000000 A9030008 F9030008
08000010 F9030008 F9030008 F9030008
08000020 00000000 00000000 00000000
08000030 F9030008 00000000 F9030008
08000040 ~ F9030008 F9030008 F9030008
08000050 ~ F9030008 F9030008 F9030008
08000060 F9030008 F9030008 F9030008
08000070 ~ F9030008 F9030008 F9030008
08000080 F9030008 F9030008 F9030008
08000090 F9030008 F9030008 F9030008
080000A0 F9030008 F9030008 F9030008
080000B0 F9030008 F9030008 F9030008
080000CO F9030008 F9030008 F9030008
080000D0 F9030008 F9030008 F9030008
080000E0 F9030008 F9030008 00000000

C-F
F90320008
00000000
F9020008
F9020008
F9020008
F9020008
F9020008
F9030008
F9030008
F9030008
F9030008
F9030008
F9030008
F9030008
F9030008

agrupamento de 1 byte por vez.

8. Vamos verificar se os enderecos das instru¢des e dados transferidos para o microcontrolador estao
condizentes com o layout especificado. Para isso, vamos adicionar a janela ‘“Disassembly”
(“Window” > “Show View” > “Disassembly”). Nesta janela, observe os enderecos das instru¢des na

1 D Format...

Please specify column and row size.

| Row Size: 1

Column Size: 4

Preview:

6 | unit(s) per row

~ | unit(s) per column

Save as Defaults |

<Address>
<Address=
<Address=
<Address>

:| Default Row Size: 1

Default Column Size: 4

6 unit(s) per row

unit(s) per column

Restore Defaults

Cancel

primeira coluna, destacados em verde. Estdo as instru¢des armazenadas na memdria Flash? E a

varidvel “i”, que € um dado, estd armazenada em qual memoria? Também observe uma tarja verde
tanto na janela do editor quanto na janela “Disassembly”. Essa tarja verde indica a instru¢do atual

em execucao, correspondente a um comando em C e sua respectiva instru¢ao em assembly.

® || %= || ® || % Debug PiscaBare Debug on: | --- [miRg | & S+iBiv|Bp gm0

@~ B0~ U ® - Fl~ Gvov O Q iE| B

Debug X [Project Explorer = B [@mainc x [§ startup_stm32h7a3zitxqs = B -Variables X % Breakpo.. % Expressi.. U!fRegisters & Live Exp.. m8SFRs — O
B %[> § 15 * S 8l Lo 8

v PiscaBare Debug [STM32 C/C++ Applic. 16~ Fieiesemmsmueesseensposassenesioser Name Type Value Location
~ i PiscaBare.elf [cores: 0] 7; */ o= uint32_t 0 0x240ffff4

~ ¢ Thread #1 [main] 1 [core: 0] (Susp 19 |#includ tdint.h
= main0 at mainc34 0xgo002r2 - Finclude <stdint.h>

+ arm-none-eabi-gdb (13290202306 1 wif Idefined(SOFT FP_) && defined(_ ARM FP)

» ST-LINK (ST-LINK GDB server) 222 #warning "FPU is not initialized, but the proj
23 #endif
24

25 volatile uint32_t *RCC_AHBAENR = ((uint32_t *)@x < >
26 volatile uint32_t *GPTOB_MODER = ((uint32_t *)@x
27 volatile uint32_t *GPTOB_OTYPER = ((uint32_t *)@
28 volatile uint32_t *GPTOB_ODR = ((uint32_t *)Ox58

=(
=(

30 #define ITERACOES 500000

== Disassembly X Enter location here ~|| &1t/ &R/ ti e § = 0

2= int main(void)

»030002f2: | ldr r3, [pc, #132] @ (0x8000378 <main+ldd>) A
*RCC_AHBAENR = *RCC_AHBAENR | 6x80000002; 080002f4: ldr 13, [r3, #0]
*GPIOB_MODER = ((*GPIOB_MODER | ©x@8000001) 030002f6: ldr r2, [r3, #0])
*GPIOB_OTYPER = *GPIOB_OTYPER & OxFFFFFFFE; 080002f8: ldr r3, [pc, #124] @ (0x8000378 <main+140>)
080002 fa: ldr r3, [r3, #0]
/* Loop forever */ 080002fc: orr.w r2, r2, #2
wint3a t i; 08000300: str r2, [r3, 40]
for(:o) I 35 *GPIOB_MODER = ((*GPIOB_MODER | 0x00000001) & 03
’%GPIOB ODR = *GPTOB ODR & OxFFFEEFFE: 08000302: ldr r3, [pc, #120] @ (@x800@37c <main+144>)
for (i20; i<500000; i++); // Gera de psoaa3ea: | ldr r3, [r3, #0]
*GPIOB_ODR |- *GPIOB ODR | ©x0000@a01; p8060386: | 1dr r3, [r3, #0]
for (i-@; i<500000; i++); // Gera de 08600368: bic.w r2, r3, #3)
) 08ee03ec: ldr r3, [pc, #108] @ (@x800037c <main+144>)
} 0800030e: ldr r3, [r3, #0]
7 AREAARIA- Are W r2 3 #1 b
< > < >

Para monitorar varidveis globais, habilite a aba “Expressions” (“Window” > “Show View” >
“Expressions”). Na janela que aparece, hd apenas um simbolo “+” em verde, para que novas
expressoes sejam adicionadas. Assim, pode-se adicionar expressdes elaboradas para visualizacao.
Como o projeto foi criado da forma basica, ndo ha suporte para visualizacao direta dos registradores
dos periféricos, e por isso vamos adicionar como expressdes 0s ponteiros criados para acesso aos
registradores. Clicando no simbolo de “+”, aparece um espaco para digitar a expressdao. Neste
espaco, digite “*RCC_AHB4ENR” e dé “Enter”. O ponteiro com seu valor aparecerd na linha.
Repita o processo para os outros trés ponteiros criados. Para visualizar os enderecos dessas
variaveis, clique no icone de trés pontos no canto superior direito da aba “Expressions” e habilite
“Address” no pop-up menu que aparece ao seguir o caminho “Layout” > “Select Columns”. Ao
final do processo, deve-se ter a aba de Expressdes conforme a figura abaixo.

= Variables % Breakpoints @ Expressions x it Registers 97 Live Expressions B SFRs = O
B4 % %9 =
Expression Type Value Address
» RCC_AHB4ENR volatile uint32_t * 0x58024540 0x24000000
#» GPIOB_MODER volatile uint32_t * 0x58020400 0x24000004
% GPIOB_OTYPER volatile uint32_t * 0x58020404 0x24000008
#» GPIOB_ODR volatile uint32_t * 0x58020414 0x2400000c

o= Add new expression

Onde estdo armazenadas essas varidveis globais?

9. Vamos explorar dois métodos para monitorar o fluxo de execu¢do. Ao clicar no icone “Step
Over” (ou pressionar F6), observamos o avango de uma linha de instru¢do na janela do editor de C.

O bloco de instrugdes em assembly entre duas linhas de cédigo em C, que estdo comentadas no
codigo assembly, corresponde a traducdo da instru¢do “*RCC_AHB4ENR = *RCC_AHB4ENR |
0x00000002;” em instrugdes assembly pelo compilador C.

18 = Disassembly < | Enterlocationhere || &1 Wy [BIR) 5 4 & =
19 #include <stdint_h> . .
20 34 *RCC_AHBAENR = *RCC_AHBAENR | 0x00000002;
21 #if ldefined(__SOFT_FP__) &% defined(__ARM_FP) 08000212 1dr r3, [pc, #132] @ (0x8000378 <main+140>)
222 #warning "FPU is not initialized, but the project is compilii 0800024 1dr r3, [r3, #0]
23 #endif 080002161 1dr r2, [r3, #0]
24 ogeoe2fs: 1ldr r3, [pc, #124] @ (0x8000378 <main+140>)
25 wvolatile uint32_t *RCC_AHBAENR = ((uint32_t *)@x58024540); 080002fa: 1dr r3, [r3, #0]
26 veolatile uint32_t *GPIOB_MODER = ((uint32_t *)@x58020400); 080002fc: orr.w r2, r2, #2
27 veolatile uint32_t *GPIOB_OTYPER = ((uint32_t *)@x58020404); 08000300 str r2, [r3, #0]
28 volatile uint32_t *GPIOB_ODR = ((uint32_t *)@x58020414); 35 *GPTOB_MODER = ((*GPIOB_MODER | ©x@0@00801) & OxFFFFFFFD);
29 * 08000302: | 1dr r3, [pc, #120] @ (0x800037c <main+144>)
30 #define ITERACOES 500000 08600304: 1dr r3, [r3, #0]
1 03000306: ldr r3, [r3, #0]
int main(void) 08000308 : bic.w r2, r3, #3
{ 0800030c: ldr r3, [pc, #108] @ (0x800037c <main+144>)
*RCC_AHBAENR = *RCC_AHBAENR | ©x80000002; 0300030e: ldr r3, [r3, #0]
*GPIOB_MODER = ((*GPIOB_MODER | 1) & OxFFFFFFFD); 08000310: orr.w r2, r2, #1
*GPIOB_OTYPER = *GPIOB_OTYPER & OxFFFFFFFE; 08000314 str r2, [r3, #0]
36 *GPIOB_OTYPER = *GPIOB_OTYPER & @xFFFFFFFE
/* Loop forever */ 08000316: ldr r3, [pc, #104] @ (0x8000380 <main+148>)
uint32_t i; pseee318: 1dr r3, [r3, #0]
for(;;) { 980083 1a: 1dr r2, [r3, #0]
*GPIOB_ODR = *GPIOB_ODR & @xFFFFFFFE; 06800031c: 1dr r3, [pc, #96] @ (0x800038@ <main+148>)
for (i=0; i<500000; i++); // Gera delay 9800031e: 1dr r3, [r3, #0]
*GPIOB_ODR |- *GPIOB ODR | @xP80080O1; #3000320: bic.w r2, r2, #1
for (i=0; i<500000; i++); /1 Gera delay 08000324: str r2, [r3, #0]
} 41 *GPIOB_ODR = *GPIOB_ODR & OxFFFFFFFE;
} 08000326: 1dr r3, [pc, #92] @ (0x8000384 <main+152>)
v 0000222 - Tdr 1 Tra #A1

Habilite o modo “Instruction Stepping Mode”, clicando no icone “i com uma seta amarela”, e
avance um passo para frente com um clique no icone “Step Over”. Em qual janela, “Editor” or
“Dissassembly”, foi avangada uma linha de comando?

[l PiscaBare Debug on: | — wiflhd | B EvBie | Bk E DD @0~ Q-

e Q B|E
¢ mainc % [$ startup_stm32h7a3zitxq.s = B -Variables X s Breakpoints % Expressions i Registers &7 Live Expressions B SFRs H
e IHA3 SUT WAl © 13 LICCHSTU GIUED Lel s Lial Lan U Tuuinu L e
13 ¥ in the root directory of this software component. HB|cte
14 * If no LICENSE file comes with this software, it is provided Name Type Value Location

15 * o= uint32_t 0 Ox240ffff4

16 3 o ke 3 3 ke e ok R 3ROk kK 3K KK 3 k3 sk ok R iR R i ok e sk okl ok R R kR R Ok kR R koK ioRoR ORI ROk ok Rk

17 */

18 Disassembly Enter location here || & th G & | 5 = & =
19 #include <stdint.h>

0 kY *RCC_AHBAENR = *RCC_AMBAENR | ©x00000002;

21 #if ldefined(_ SOFT_FP__) && defined(__ARM_FP) 08000212: 1dr r3, [pc, #132] @ (8x880B@378 <main+148>)

22 #warning "FPU is not initialized, but the project is compilii 0800024 ldr r3, [r3, #0]

23 #endif 880002f6: ldr r2, [r3, #0]

24 08000218 ldr r3, [pc, #124] @ (Ox8000378 <main+140>)

25 wvolatile uint32_t *RCC_AHB4ENR = ((uint32_t *)@x580824548); 080002fa: 1dr r3, [r3, #0]

26 volatile uint32_t *GPIOB_MODER = ((uint32_t *)0x58020400); 080002fc: orr.w r2, r2, #2

27 volatile uint32_t *GPIOB_OTYPER = ((uint32_t *)0x58020404); 03000300 str r2, [r3, #0]

28 volatile uint32_t *GPIOB_ODR = ((uint32_t *)@x58020414); 35 *GPTOB_MODER = ((*GPTOB_MODER | ©x00000001) & OxFFFFFFFD);
29 08000302 ldr r3, [pc, #120] @ (©x8000837c <main+144>)

30 #define ITERACOES 500000 » 02000304: | 1dr r3, [r3, #0]

31 08000306: ldr r3, [r3, #0]

32=int main(void) 08000308 : bic.w r2, r3, #3

33 4 0300030c: ldr r3, [pc, #108] @ (0x800037c <main+144>)

34 *RCC_AHBAENR = *RCC_AHBAENR | 0x00000002; 0800030e: ldr r3, [r3, #0]

35 *GPTOB_MODER = ((*GPIOB_MODER | 0x00000001) & OxFFFFFFFD); 02000310: orr.w r2, r2, #1

36 *GPIOB_OTYPER = *GPIOB OTYPER & @xFFFFFFFE; 08000314 str r2, [r3, #0]

37 36 *GPIOB_OTYPER = *GPIOB_OTYPER & OxFFFFFFFE;

38 /* Loop forever */ @8009316: ldr r3, [pc, #104] @ (9x8000@380 <main+148>)

39 uint32 t i; @8000318: ldr r3, [r3, #8]

40 for(;;) { 0800031a: ldr rz, [r3, #8]

41 *GPIOB_ODR = *GPIOB_ODR & ©OxFFFFFFFE; @800031c: ldr r3, [pc, #96] @ (0x800038@ <main+148>)

42 for (i=0; i<500000; i++); // Gera delay 08@003le: ldr r3, [r3, #08]

43 *GPIOB_ODR |= *GPIOB_ODR | ©x80000001; @2000320: bic.w r2, r2, #1

44 for (i=0; i<500000; i++); // Gera delay 08000324 : str r2, [r3, #0]

45 1 41 *GPIOB_ODR = *GPIOB_ODR & @xFFFFFFFE;

10. Para verificar se os valores dos registradores SP e PC estdao de acordo com o layout especificado,
abra a aba “Registers” e expanda o item “General Registers” clicando em ‘“>”. Como a funcdo

“Reset_Handler” estd definida no arquivo “startup_stm32h7a3zitxq.s”, retorne a perspectiva de
Programacdo e abra esse arquivo com um duplo clique no aba “Project Explorer”. Na janela de

editor aberta, localize a func¢do “Reset_Handler” em assembly e insira um ponto de interrup¢do na

sua primeira instrugao.

L5 Project Explorer x =8 main.c

[startup_stm32h7a3zitxgs *

supplied main() routine is called.

/* set stack pointer */

= 0

/* Copy the data segment initializers from flash to SRAM */

BE® Y § | 49 ¢
13 Pisca 5@ * @param MNone
3 Pisca ASM 51 * @retval : None
-) *
~ [[PiscaBare :g /
b oo 5
*_ Binaries 54 .section .text.Reset Handler
&) Includes 55 .weak Reset_Handler
2 Inc 56 .type Reset_Handler, %function
~ B Src bWReset_Handlerj
[& main.c 58 ldr r@, = estack
[g] syscalls.c 59 mov sp, r@ R . .
60 /* Call the clock system initialization function.*/
[& sysmem.c . X
1 bl SystemInit
~ (B Startup 2
[8) startup_stm32h7a3zitxg.s 3
~ = Debug 4 1ldr r@, = sdata
= Src 5 1ldr r1, =_edata
& Startup 6 1ldr r2, = sidata
%5 PiscaBare.elf - [arm/le] ! EOZS Pé’ #g taTnit
L& makefile ooptopylatalnt

|£ objects.list

| objects.mk

=| PiscaBare.list
PiscaBare.map
L@ sources.mk

@ CopyDatalnit:

ldr r4, [r2, r3]
str r4, [r@, r3]
adds r3, r3, #4

[SR EV I)

=l PiscaBare Debug.launch - LoopCopyDatalnit:
% STM32HTA3ZITXQ FLASH.Id 6 adds r4, ro, r3
- Ql : 7 cmp rd, ril

[STM32HT7A3ZITXQ_RAM.Id
1 PiscaBare_CMSIS

becc CopyDatalnit

L B T L B L B I = J = W=\ W+ W= W s B e
(el e

[l -5]

80 /* Zero fill the bss segment. */

Volte para a Perspectiva de Depuragdo e pressione o icone “Reset the chip and restart the debug
session”. Leia o conteudo do SP e PC na aba “Registers”. Observe que o bit 0 do valor do PC,
0x800003A8, ¢ ‘0’, enquanto o bit 0 do valor carregado no endereco 0x08000004, 0x800003A9, é
‘1’. Este bit determina o modo de processamento de instru¢do usado para interpretar as instrugdes
buscadas pelo PC em cada etapa do seu progresso: se o bit 0 é ‘0’, o processador estd em modo
ARM (instrucdes de 32 bits); se o bit 0 € ‘1°, o processador estd em modo Thumb (instrugdes de 16

bits).

R || 4 || ® | 4 Debug [PiscaBare_CMSIS Debug on: |- [mild | & LWL S v e S T [CRIER AR AN JP R
Brflvead evyo~|m @ Q iE| B
45 Debug % [¢5 Project Explorer = O Emainc [Sstartupstm32. X T stm32h7adxxqh & STM32HTAIZITX... = O -Varia.. °eBreak. @ Expre.. ¥iRegis. X ¥ LliveE. EESFRs O Memo.. = O
= %|i#* § 37.word _sdata A HE| 9§
~ [PiscaBare_CMSIS Debug [STM32 C/C++ Appli 38 /* end address for the .data section. defined in linker script Name Value Description ~
v 8 PiscaBare_CMSIS.elf [cores: 0] 39 .word _edata . . o . 1 0
- " 40 /* start address for the .bss section. defined in linker scrip
~ ¢ Thread #1 [main] 1 [core: 0] (Suspendec 41 word sbss w12 0
_ = Reset Handler(at startup_stm327e 5 s« ong address for the .bss section. defined in linker script it sp 0x24100000
» arm-none-eabi-gdb (13.2.90.20230627) 43 .word _ebss 8 Ir -1
s ST-LINK (ST-LINK GDB server) 44 i pe 0x80003a8 <Reset Handlers
45 [** 4 xpsr 16777216
46 * @brief This is the code that gets called when the processo 0 do 0
47 * starts execution following a reset event. Only the 5 d1 0
48 * necessary set is performed, after which the applic - he
49 * supplied main() routine is called. < >
50 * @param None
51 * @retval : None
52%/
53

54 .section .text.Reset Handler

55 .weak Reset_Handler

56 .type Reset_Handler, %function

_ 57Reset_Handler:

i 53 ldr r@, = estack

59 mov sp, r@ /* set stack pointer */

/* call the clock system initialization function.*/
bl SystemInit

/* Copy the data segment initializers from flash to SRAM */
1dr r@, = sdata

1dr r1, = edata

1dr r2, = sidata

movs r3, #8

b LoopCopyDatalnit

ldr r4, [r2, r3]
str r4, [r0, r3]
adds r3.

7
7
7
7

9
@ CopyDataInit:
2
3

ri. #4

* 080003a8:
59
086003aa:
61
080003ac:
64
©80003b0
65
©080003b2:
66
080003b4:
67
080003b6:
68
080003b8:

Enter locationhere || &1 /Bl 52 & = O

Reset_Handler: ~
1dr re, [pc, #52] @ (0x80003e0 <Reset_Handler- =
mov sp, r@ /* set stack pointer */
mov ro

bl SystemInit

nop.w
1dr r@,
1dr
1dr r1,
1dr
ldr r2,
ldr

. sdata
r@, [pc, #48] @ (0x80003ed <LoopForever+6
- edata
r1, [pc, #52] @ (0x800@3e8 <LoopForever+l(
-_sidata
r2, [pc, #52] @ (0x80003ec <LoopForever+l:

movs r3, #0@

movs

r3, #0

b LoopCopyDataInit

b.n

0x80003c@ <Reset_Handler+23> v

11. Clique no icone “Terminate and Relaunch”. Em seguida, “Resume”. O que aconteceu com o
LED verde?

12. Vamos agora adicionar novas fun¢des ao arquivo 'main.c' para praticar chamadas de funcoes.
Substituimos o lago “for” por uma chamada de fungdo “void espera(uint32_t valor)”, que passa o
parametro “valor” por valor. Esta funcdo, por sua vez, invoca a fungcdo ‘“void
multiplo_iteracoes(uint32_t valor, uint32_t *j)” para calcular o niimero de iteragdes que o comando
“while” na fungado “espera” deve executar.

Note que a funcdo “multiplo_iteracoes” possui dois parametros: o primeiro é passado por valor,
enquanto o segundo recebe o valor de endereco da varidvel “i”, declarada na funcdo “espera”.
Observe também como esses parametros sdo acessados dentro da fungdo. O valor do parametro

(13421

passado por valor de endereco, “j”, é acessado através de “*j”.

Dentro da fungdo “espera” em que a varidvel “i” é declarada, o valor de endereco desta varidvel é
passada pelo comando “&i”.

29

30 #define ITERACOES 5000

31

32=void multiplo_iteracoes (uint32_t valor, uint32_t *j)

33 {

34 *j = valor * ITERACOES;
35 return;

36)

37

28-void espera (uint32_t valor)
39 {

40 uint32_t i;

41

42 multiplo iteracoes (valor, &i);
43 while (i) i--;

main(void)

*RCC_AHBAENR = *RCC_AHBAENR | 0x00000002;
*GPIOB_MODER = ((*GPIOB_MODER | 0x00080001) & @xFFFFFFFD);
*GPIOB_OTYPER = *GPIOB_OTYPER & OxFFFFFFFE;

/* Loop forever */

for(5;) {
*GPIOB_ODR = *GPIOB_ODR & @xFFFFFFFE;
espera (1000);
*GPIOB_ODR |= *GPIOB_ODR | ©x00000001;
espera (1000);

[T ="s B I s LR 5 B N W iy)

e

13. Faga “Build” da nova versdo e reexecute o projeto no modo “Debug”. Certifique na aba
“Disassembly” a integracdo das duas novas func¢des “espera” e “multitplo_iteracoes™ através dos
enderecgos das duas instrucdes.

14. Agora altere o programa para que pisque o LED amarelo (ligado em PEl) em vez do LED
verde. Deve-se alterar o bit do registrador do RCC para ativar GPIOE em vez de GPIOB. Além
disso, os bits a serem modificados nos registradores do GPIOE se referem ao pino 1 e ndo mais ao
pino O.

CRIANDO UM NOVO PROJETO EM C BARE-METAL E ASSEMBLY

Nem todas as fungdes de hardware t€m um comando equivalente direto na linguagem C, como ¢ o
caso do deslocamento aritmético ASR. Para superar essas limitagcdes, a linguagem C oferece a
diretiva “asm”, que permite a integragdo de cddigo em assembly. Isso possibilita aproveitar as
vantagens de ambas as linguagens de forma complementar. Este projeto demonstra essa integracao

ao realizar a mesma tarefa de piscar o LED verde.

1. Vamos criar um novo projeto, selecionando a placa NUCLEO e criando o projeto com o nome

“PiscaBare ASM”, lembrando de selecionar a op¢ao “Empty” no campo “Targeted Project Type”.

2. Vamos reusar o co6digo “main.c” do projeto “PiscaBare”, sobrescrevendo o arquivo “main.c” com
0 “main.c” so projeto “PiscaBare”. Para isso, localize o arquivo “main.c” do projeto “PiscaBare”
com uso de um explorador de arquivos. Copie o arquivo e va para a aba “Project Explorer”. Clique
o botdo direito na sub-pasta “Src” e selecione “Paste” para colar o arquivo copiado. O

STM32CubelDE perguntara se vocé quer sobrescrever o arquivo existente. Confirme “Overwrite”.

Question h 4

Overwrite PiscaBare_ASM/Src/main.c?

Overwrite All Don't Overwrite Cancel

3. Abra o arquivo “main.c” no “Editor” com duplo-clique.Vamos substituir as instrugdes em C por

2
b

assembly na fun¢do “multiplo_interacoes” usando a diretiva “asm”, ou “ asm” ou “_asm
dependendo do compilador. Para ndo reinventar a roda, vamos analisar como o compilador traduziu
essas instrugdes em assembly na aba “Disassembly” da perspectiva de Depuracao. Isso requer que
construamos e executemos o projeto. Vale ressaltar que o compilador C insere automaticamente
instrugdes para o chaveamento de contexto ao traduzir uma chamada de fun¢do. Essas instrugdes,
destacadas pela linha vermelha, incluem o salvamento dos registradores de trabalho (R0-R7, SP, LR
e PC), a alocagdo de espaco na pilha para empilhar variaveis locais na entrada da funcao, ¢ a
recuperagdo dos valores dos registradores e desempilhamento das varidveis locais na saida da
funcdo. Abordaremos esse processo em detalhes mais adiante. O que nos interessa sdo as 4

2 ¢

instrugdes no formato de instru¢ao ARM, “mov.w”, “mul.w”, “ldr” e “str”.

2 Disassembly | Enter location here ~ || &1 % [BIE 9 ¢

uuuuuuuuu — Py e

P80002e6: movs rd, #0

P80P0A2e8 : 1sls rd, r3, #17

P80VR2ea: lsrs re, re, #32
multiplo_iteracoes:

P80002ec:

08000216 = i
08000218 movw r2, #5000 @ ox1388

P80ve2fc: mul.w r2, r3, r2
08000300: ldr r3, [r7, #9]
08000302 :

08000304 :

02000305

0800a3@s
08000300
0800030e:

espera:

P8APB310: push ir7, 1r}
P80PL312: sub sp, #16
08000314 : add r7, sp, #0

Como nosso microcontrolador suporta apenas o formato Thumb, precisamos ajustar o formato das
instrucdes para que sejam compativeis com esse conjunto de instrugdes. Além disso, como nao
temos acesso direto ao endereco que o compilador alocou para a constante “ITERACOES”,

31
1

devemos criar uma variavel local chamada “i” para armazenar o valor da constante e, em seguida,

passar o enderego dessa variavel para as instrucdes em assembly.
20 #define ITERACOES 5@00

31
32=void multiplo_iteracoes (uint32_t valor, uint32_t *j)

33 {

34 //*j = valor * ITERACOES;
35 uintl6_t i = ITERACOES;

36

37 asm ("mov r2, %2 \n\t"

38 "mov r3, %1 \n\t"
39 "muls r3, r2 \n\t"
40 "mov %0, r3 \n\t"
41 2U=rt(*5)

42 "r"(valor), "r"(i)
43 22", "r3"

44 'H

45

46 return;

47 }

48

4. Faca “Build” e execute o novo projeto.

5. Redefina as fungdes conforme descrito abaixo e traduza as instrucdes da nova fungdo
“multiplo_iteracoes” para assembly embutido em C.
multiplo_iteracoes (uint32_t *valor) {
*valor = *valor * ITERACOES;
}
void espera (uint32_t valor) {
uint32_t1i = valor;

multiplo_iteracoes (&i);

while (i) i--;
}
Mude a cor do LED de verde para amarelo. Faca “Build” e execute o projeto. Depois exporte o

projeto em um arquivo ZIP, apds filtrar com “Clean ...”, para ser incluido no Moodle.

Criando um novo projeto em C bare-metal usando CMSIS

A CMSIS (do inglés Cortex Microcontroller Software Interface Standard) desempenha um papel
crucial no desenvolvimento de cddigos para microcontroladores, oferecendo uma série de vantagens
significativas em termos de portabilidade, acesso eficiente ao hardware e disponibilidade de
recursos pré-desenvolvidos. Esta padronizagdo, promovida por fabricantes de microcontroladores
como ARM, busca unificar e simplificar a criagdo de sofiware para diferentes dispositivos,
beneficiando tanto desenvolvedores quanto fabricantes. A padronizagdo reflete em diversos niveis,
desde o nivel do processador até o sistema completo de uma placa de desenvolvimento. Vamos

apresentar um projeto em que explora a padronizacdo a nivel do microcontrolador
STM32H7A3ZIT6-Q.

1. Inicia-se um novo projeto, exatamente como foi feito no modulo anterior, selecionando a placa
NUCLEO e criando o projeto com o nome “PiscaBare CMSIS”, lembrando de selecionar a opgao

“Empty” no campo “Targeted Project Type”.

2. A seguir, o IDE entra na perspectiva de Programacdo. Antes de iniciar a edi¢do de um programa
em C, vamos adicionar os arquivos de cabecalho que oferecem mnemonicos padronizados para
acessar os registradores e seus campos de bits. Vamos para “Project” > “Properties”. Em seguida,
selecionamos “C/C++ General” > “Paths and Symbols”. Na aba “Includes”, selecione (“Add”) para
incluir o caminho da pasta que contém o arquivo “stm327a3xxq.h”. Geralmente ¢ o caminho para as

bibliotecas CMSIS e HAL no repositorio fornecido pela STMicroelectronics.

File Edit Source Refactor Navigate Search Project Run Window Help Hello Shin-Ting
% || % || ® ||4 Debug [T PiscaBare_CMSIS Debug on: |--- [mifhd RN B:iw g v el [
HefletoF oD~ 20 O Frope - .
[y Project Explorer x B&Y § 5 ,
9 C_programacao type filter text Paths and Symbols H
I Pisca Resource
T Pisca_ASM Builders) ! oo e - -
I PiscaBare C/C++ Build Configuration: Debug [Active] Manage Configurations..

U PiscaBare_ASM
~ [PiscaBare_CMSIS
Binaries

~ @l Includes

v C/C++ General

(12 C/ST/STM32CubelDE_1.16.0/STM32Cubel DE/plug|
(B C/ST/STM32CubelDE_1.16.0/STM32Cubel DE/plug|
(& C/ST/STM32CubelDE_1.16.0/STM32Cubel DE/plug|
(= C/ST/STM32CubelDE_1.16.0/STM32Cubel DE/plug|

(= Debug

& Inc

= Src

(& Startup

|£ PiscaBare_CMSIS Debug.launch
uw STM32H7A3ZITXQ FLASH.Id
w STM32H7A3ZITXQ_RAM.IA

Dé “OK” ¢ “Appy”. E feita, entdo, a construgdo automatica do indice (C/C++ index) de todos os

arquivos, defini¢des, declaragdes, e simbolos presentes no projeto, mantidos pelo STM32CubelDE,

Code Analysis —) . .
. (= Includes | # Symbols| =4 Libraries| & Library Paths 2 Source Location | &) References
Documentation
File Types Languages Include directories Add..
Formatter GNU C
Indexer Edit.
Assembly
Language Mappin Delete
Paths and Symbols
Dranracacear Incli | __Export
m—:::z ectory pat >
Directory: e ———
‘ EA\Ting\Projects\STM32C Repository\STM32Cube_FW_H7_V1.11.2\Drivers\CMSIS\Device\ST\STM32H7xx\Include _:-
[] Add to all configurations _-_\T-_“!-__
[] Add to all languages
| [& Is a workspace path i
File system...

Cancel

para que todos os arquivos de cabecgalho na pasta passam a ser disponibilizados ao projeto.

3. Quando concluida a reconstru¢do, aparecera o caminho inserido na lista da pasta “Includes” na
vista “Project Explorer”. Precisamos ainda incluir com “Add” o caminho da pasta que contém o

arquivo “core_cm?7.h”. Este arquivo contém as defini¢des, declaracdes e simbolos relacionados ao

nucleo Cortex-M7.

File Edit Source Refactor Navigate Search Project Run

% | 4 || ® || 45 Debug [PiscaBare_CMSIS Debug on: | --- il | &~ &~ @ =Y v
7 v 18 vl o DZ:':eie:':Z:::-EfeI [} x
i Project Explorer x BES%Y § 9
W i hd -

B C_programacao Paths and Symbols

I Pisca Resource

T Pisca_ASM Builders . . Deb Py - -

. : v
3 PiscaBare C/C++ Build Configuration: | Debug [Active] Manage Configurations...

T PiscaBare_ASM
~ [PiscaBare_CMSIS
Binaries
~ Y Includes
(= C:/ST/STM32CubelDE_1.16.0/STM32Cubel DE/plug
(2 C/ST/STM32CubelDE_1.16.0/STM32Cubel DE/plug|
(= C:/ST/STM32CubelDE_1.16.0/STM32Cubel DE/plug
(2 C/ST/STM32CubelDE_1.16.0/STM32Cubel DE/plug|
pel E:/Ting/Projects/STM32Cube/Repository/STM32C(
(= Debug
& Inc
(= Src
(= Startup
|= PiscaBare_CMSIS Debug.launch
| STM32HT7A3ZITXQ_FLASH.Id
[STM32HTA3ZITXQ_RAM.Id

Window Help Hello Shin-Ting

v C/C++ General

Code Analysis — . i . B
. (= Includes| # Symbols| =i Libraries # Library Paths (2 Source Location| £l References
Documentation
File Types Languages Include directaries Add...
Formatter GNU € (= EA\Ting\Projects\STM32Cube\Repository\ST... 5
Indexer Assembly Edit..
Language Mappin Delete
Paths and Symbals |
[Add directory pat =
Directory:
‘ E:\Tihg\ProjEcts\STM32CLIE_Repository\STMSZCube,FW,H?,\H 1 ‘2\Drivars\CMSIS\Include_:l
[JAdd to all configurations Variables..
[J Add to all languages
[] e Is a workspace path LS
File system...

Cancel

D¢ “OK”, “Apply and Close” e confirme “Rebuild index”.

4. Ao final do procedimento, temos duas novas pastas incluidas na pasta “Includes” que nos

permitem usar mnemonicos padrio para manipular os registradores do microcontrolador.

[Project Explorer % &7 § =0
U C_programacao
T Pisca
T Pisca_ASM
I PiscaBare

1J PiscaBare_ASM
PiscaBare_CMSIS
Binaries
~ & Includes
(= C/ST/STM32CubelDE_1 16.0/STM32CubelDE/plugins/com.st.stm32cube.ide. mcu.externaltools.gnu-tools-for-stm32.12.3.rel1.win32_1.0.200.202406191623/tools/arm-none-eabi/include
(= C:/ST/STM32CubelDE_1 .16.0/STM32CubelDE/plugins/com.st.stm32cube.ide. mcu.externaltools.gnu-tools-for-stm32.12.3.rel1.win32_1.0.200.202406191623/tools/arm-none-eabi/include/newlib-nano
® C/ST/STM32CubelDE_1.16.0/STM32Cubel DE/plugins/com.st.stm32cube.ide.mcu.externaltools.gnu-tools-for-stm32.12.3.rel1.win32_1.0.200.202406191623/tools/lib/gcc/arm-none-eabif12.3.1/include
(& C/ST/STM32CubelDE_1 16.0/STM32CubelDE/plugins/com.st.stm32cube.ide. mcu.externaltools.gnu-tools-for-stm32.12 3.rel1.win32_1.0.200.202406191623/tools/lib/gcc/arm-none-eabi/12.3.1/include-fixed
(= E/Ting/Projects/STM32Cube/Repository/STM32Cube FW_H7 V1.11.2/Drivers/CMSIS/Device/ST/STM32HTx¢/Include
® E:/Ting/Projects/STM32Cube/Repository/STM32Cube_FW_H7_V1.11.2/Drivers/CMSIS/Include
(= Debug
& Inc
(= Src
(= Startup
=| PiscaBare_CMSIS Debug.launch
w STM32H7A3ZITXQ_FLASH.Id
uw STM32H7A3ZITXQ_RAM.Id

<

5. Vamos incluir o arquivo de cabecalho “stm32h7a3xxq.h” no “main.c”. Adicione o comando
“#include <stm32h7a3xxq.h>", conforme a figura abaixo. Depois, clique com o botdo direito sobre
o nome “stm32h7a3xxq.h” para habilitar um pop-up menu. Selecione “Open Declaration” no menu.
Alternativamente, pode-se dar um clique simples com o botao esquerdo para colocar o cursor sobre

o nome do arquivo e pressionar F3.

#include <stdint.h>

Pt =
= @D

]
(%]
k

#include <stm32h7a3xxg.h>

L4

23 #if ldefined(__SOFT_FP_) &R defined(__ARM_FP)

24 #warning "FPU is not initialized, but the project is compiling for an FPU. Please 1
25 #endif

26

27 #define ITERACOES 5000

28

Ao tentar abrir o arquivo, aparecerdo dois avisos sobre o tamanho do arquivo. Dé “OK” e, em

seguida, desmarque a caixa “Disable editor live parsing (...)” e clique em “Apply and Close”.

eama s maama e amaaam aeae. amemees e mesmgegeomsspn s s ame peaia pesses e

{ '0 You are opening a large file. Scalability mode has been turned on for this editor to help
LY improve performance.

Do you want to change scalability settings now?

[[] Do not show this message again.

5. Observando o arquivo “stm32h7a3xxq.h”, podemos ver que todos os modulos X integrados no
microcontrolador STM32H7A3ZIT6-Q sao abstraidos em estruturas (“structs”), onde cada elemento
representa um registrador especifico. Essas estruturas sdo entdo redefinidas para novos tipos
X DefType utilizando a diretiva “#typedef”. Por exemplo, a estrutura formada pelos registradores

do RCC ¢ redefinida como RCC_ DefType, enquanto a estrutura dos registradores GPIOx

E Preferences

type filter text

Code Analysis ™
Code Style
Core Build Tool
Debug
Editor
Content Assi
Folding
Hovers
Mark Occurr
Save Action:
Scalability
Syntax Colol
Templates
Typing
File Types
Indexer
JSON Compilat
Language Map
New C/C++ Prc
Property Pages
Task Tags
Template Defal
CMakeEd
Doxygen
Help
Install/Update
Remote Developn
Run/Debug
STM32Cube
Terminal

<

Version Control (Te v
< >

@ b

Scalability
Settings for editor scalability

Scalability mode detection
Alert me when scalability mode will be turned on

Enable scalability mode when the number of lines in the file is more than: | 5000

Scalability mode settings
[IEnable all scalability mode options
Disable editor live parsing {Outline view, semantic highlighting and folding will also be disabled)
[] Disable semantic highlighting in editor
[Disable syntax coloring in editor
[Disable parsing-based content assist proposals
[JDisable content assist auto-activation

Parser settings
Skip trivial expressions in initializer lists 1000

[J Maximum number of tokens per translation unit. 25000000

Note: Some options do not affect open editors

Restore Defaults

Apply and Close

Apply

Cancel

redefinida como GPIO_DefType

894
895
8096
897
898
899
900
981
902
9@3
9084
9a5

e

Redefinindo os intervalos de enderecos de memoria para os tipos das estruturas, podemos acessar

diretamente os registradores mapeados na memoria usando os enderecos base dos blocos de

1134 wint32_t RESERVED12; /*1< Reserved,

1135 _ TI0 uint32_t AHB3LPENR; /*1< RCC AHB3 peripheral sleep clock
1136 _ TI0 uint32_t AHBI1LPENR; /*1< RCC AHB1 peripheral sleep clock
1137 I0 uint32 t AHBZLPENR; /*1< RCC AHB2 peripheral sleep clock
1128 I0 uint32 t AHB4LPENR; /*1< RCC AHB4 peripheral sleep clock
1139 _ I0 uint32_t APB3LPENR; /*1< RCC APB3 peripheral sleep clock
1148 _ T0 uint32_t APBI1LLPEMNR; /*1< RCC APB1 peripheral sleep clock
1141 _ IO uint32_t APBI1HLPEMNR; /*1< RCC APB1 peripheral sleep clock
1142 _ T0 uint32_t APB2LPENR; /*1< RCC APB2? peripheral sleep clock
1143 I0 uint32_t APB4LPENR; /*1< RCC APB4 peripheral sleep clock

1144 uint32_t
1145

RESERVED13[4]; /%1« Reserved, 8x128-8x12C

1146 } [HoemE Iy ;

typedef struct

{
_ I0 uint32_t MODER; /*1< GPIO port mode register, Address
_ I0 uint32_t OTYPER; /*1< GPIO port output type register, Address
_ I0 uint32_t OSPEEDR; /*!< GPIO port output speed register, Address
~ I0 uint32 t PUPDR; /*1< GPIO port pull-up/pull-down register, Address
_ IO uint32_t IDR; /¥1< GPIO port input data register, Address
_ T0 uint32_t ODR; /*1< GPTI0 port output data register, Address
_ I0 uint32_t BSRR; /*1< GPIO port bit set/reset, Address

_ 10 uint32_t LCKR;

JWGPI0 TypeDefH

/*1< GPIO port configuration lock register, Address

I0 uint32_t AFR[2]; /*1< GPIO alternate function registers, Address

register,
register,
register,
register,
register,
Low Word register,
High Word register,

register,
register,
offset: Ox00
offset: x84
offset: @x@8
offset: @x6C
offset: @x10
offset: @xl14
offset: @x18
offset: @x1C
offset:

=/
=/
i
*/
=/
i
=/
=/

Ox20-0x24 */

memoria como ponteiros. Esses enderecos sdo definidos por macros, como ((RCC_TypeDef *)
RCC BASE) e ((GPIO_TypeDef *) GPIOB_BASE), em “stm32h7a3xxq.h” e s@o referenciados

pelas macros RCC e GPIOB, respectivamente. Isso evita o uso direto dos enderegos-base no codigo.

2409 #define PSSI ((PSSI_TypeDef *) PSSI_BASE)
2410 #define RCC ((RCC_TypeDef *) RCC_BASE)

2411 #define FLASH ((FLASH_TypeDef *) FLASH_R_BASE)
2412 #define CRC ((CRC_TypeDef *) CRC_BASE)

2413

2414 #define GPIOA ((GPIO_TypeDef *) GPIOA BASE)
2415 #define GPIOB ((GPIO_TypeDef *) GPIOB_BASE)
2416 #define GPIOC ((GPIO_TypeDef *) GPIOC_BASE)
2417 #define GPIOD ((GPIO_TypeDef *) GPIOD_BASE)

Os enderegos-base, GPIOB BASE e RCC BASE, sao macros definidas no mesmo arquivo.

2052 /*!< SRD_AHB4PERIPH peripherals */

2053 #define GPIOA_BASE (SRD_AHBAPERIPH_BASE + @x8008UL)
2054 #define GPIOB_BASE (SRD_AHBAPERIPH_BASE + ©x0400UL)
2055 #define GPIOC_BASE (SRD_AHBAPERIPH_BASE + 9x0800UL)
2056 #define GPIOD_BASE (SRD_AHBAPERIPH_BASE + @x8C08UL)
2057 #define GPIOE_BASE (SRD_AHBAPERIPH_BASE + ©x1000UL)
2058 #define GPIOF_BASE (SRD_AHBAPERIPH_BASE + ©x1400UL)
2059 #define GPIOG_BASE (SRD_AHBAPERIPH_BASE + @x1800UL)
2060 #define GPIOH_BASE (SRD_AHBAPERIPH_BASE + ©x1CeeUL)
2061 #define GPIOI_BASE (SRD_AHBAPERIPH_BASE + 9x2000UL)
2062 #define GPIOJ_BASE (SRD_AHBAPERIPH_BASE + 0x2400UL)
2063 #define GPIOK_BASE (SRD_AHBAPERIPH_BASE + @x2808UL)
2064 #define RCC_BASE (SRD_AHBAPERIPH_BASE + ©x4400UL)
2065 #define PWR_BASE (SRD_AHBAPERIPH_BASE + ©9x4806UL)
2066 #define BDMA2_BASE (SRD_AHBAPERIPH_BASE + @x5400UL)
2067 #define DMAMUX2_BASE (SRD_AHBAPERIPH_BASE + ©x5800UL)
2068

A defini¢do de GPIOB BASE ¢ RCC BASE envolve a macro SRD AHB4PERIPH BASE, que ¢

também definida no mesmo arquivo.

1992 #define SRD_APB4PERIPH_BASE (PERIPH_BASE + ©x18000080UL) /*!< D3_APBIPERIPH_BASE (PERIPH_BASE + 0x18000000UL)
NEEEAE S LW SRD AHBAPERIPH BASE (PERIPH_BASE + 0x18020000UL) /%!« D3_AHBI1PERIPH_BASE (PERIPH_BASE + 0x18020008UL)

A definicdo da macro SRD_AHB4PERIPH BASE depende, por sua vez da macro PERIPH _BASE.

[mainc @l stm32h7aliogh X

1948 * @{

1949 */

1950 #define CD_ITCMRAM BASE (0x000000RRUL) /*!< Base address of : 64KB RAM reserved for CPU execution/instruction accessible over ITCM *
1951 #define CD_DTCMRAM_BASE (0x20000000UL) /*!< Base address of : 128KB (2x64KB) system data RAM accessible over DTCM *
1952 #define CD_AXIFLASH_BASE (0x08000000UL) /*!< Base address of : (up to 2 MB) embedded FLASH memory accessible over AXI *
1953

1954 #define CD_AXISRAM1_BASE (0x24000000UL) /*!< Base address of : (up to 256KB) system data RAM1 accessible over over AXI

1955 #define (D_AXISRAM2_BASE (0x24040000UL) /*!< Base address of : (up to 384KB) system data RAM2 accessible over over AXI

1956 #define CD_AXISRAM3_BASE (0x240A000QUL) /*!< Base address of : (up to 384KB) system data RAM3 accessible over over AXI

1957 #define CD_AHBSRAM1_BASE (8x30000000UL) /*!< Base address of : (up to 64KB) system data RAM1 accessible over over AXI-»>AHB Bridge

1958 #define CD_AHBSRAM2_BASE (0x30010000UL) /*!< Base address of : (up to 64KB) system data RAM2 accessible over over AXI->AHB Bridge
1959

1960 #define SRD_BKPSRAM_BASE (@x38800000UL) /*!< Base address of : Backup SRAM(4 KB) over AXI->AHB Bridge

1961 #define SRD_SRAM BASE (Ox38000000UL) /*!< Base address of : Backup SRAM(32 KB) over AXI->AHB Bridge

1962

1963 #define OCTOSPI1_BASE (0x90000000UL) /*!< Base address of : OCTOSPI1 memories accessible over AXT

1964 #define OCTOSPI2_BASE (0x70000000UL) /*!< Base address of : OCTOSPI2 memories accessible over AXI

1965

1966 #define FLASH_BANK1_BASE (0x08000000UL) /*!< Base address of : (up to 1 MB) Flash Bankl accessible over AXI *
1967 #define FLASH_BANK2_BASE (0x08100000UL) /*!< Base address of : (up to 1 MB) Flash Bank2 accessible over AXI *
1968 #define FLASH_END (Bx@81FFFFFUL) /*!< FLASH end address *
1969

1970 /* Legacy define */

1971 #define FLASH_BASE FLASH_BANK1_BASE

1972 #define D1_AXISRAM_BASE CD_AXISRAM1_BASE

1973

1974 #define FLASH_OTP_BASE (Ox@8FFFOROUL) /*!< Base address of : (up to 1KB) embedded FLASH Bankl OTP Area */
1975 #define FLASH_OTP_END (@x@8FFF3FFUL) /*!< End address of : (up to 1KB) embedded FLASH Bankl OTP Area *f
1976

1977

1978 /[*l< Device electronic signature memory map */

1979 #define UID BASE (0x08FFF800UL) /*1< Unigue device ID register base address */

1980 #define FLASHSIZE_BASE (Ox0O8FFF8ACUL) /*!1< FLASH Size register base address */

1981 #define PACKAGE B 0x08FFF8QEUL) /*1< Package Data register base address */

(0x40000000UL) /M!< Base address of : AHB/ABP Peripherals

A partir do enderego 0x40000000 da macro PERIPH BASE, ¢ possivel retroceder pelas macros que
passamos para encontrar os enderecos-base das macros RCC_BASE e GPIOB_BASE.

5. Com essa abordagem, podemos escrever o nosso cddigo sem a necessidade de criar varidveis
adicionais para acessar os registradores; podemos utilizar diretamente os mnemonicos definidos no
arquivo de cabecalho “stm32h7a3xxq.h”.

27 #define ITERACOES 5000

28

29=void multiplo_iteracoes (uint32 t valor, uint32_t *j)
30 {

31 *j = valor * ITERACOES;

return;

uint32 t i;

multiplo_iteracoes (valor, &i);
while (i) i--;

main(void)

// Inicializa GPIOB, pino @ (PB@)
RCC->AHBAENR |= @x00000002; // GPIOB clock enable

// PB@ como saida digital
GPIOB->MODER |: Ax00000001 ;
GPIOB->MODER &= @OxFFFFFFFD;

GPIOB->0TYPER &= OxFFFFFFFE; // PB@ como push-pull

/* Loop forever */

for(;;) {
GPIOB->0DR &= OxFFFFFFFE; // PBO = 0
espera(1000); // Gera delay
GPIOB->0DR |= 9x@0000001; // PBO = 1
espera(1000); // Gera delay

6. Além dos enderecos-base de cada mddulo, o arquivo “stm32h7a3xxq.h” inclui diversas macros
para a configuracdo individual dos bits, o que torna o c6digo mais legivel. A figura a seguir ilustra

as macros associadas a diferentes mascaras de bits do registrador MODER de um médulo GPIOx.
Por exemplo, a macro GPIO MODER MODEO Msk define a mascara 0x00000003, enquanto a
macro GPIO. MODER_MODE4 Msk define uma mascara 0x00000300.

E_’.l J/#########********* Blts definition -FOIn GPIOM Fegister‘ ******###########J/
9622 #define GPIO_MODER_MODE®_Pos (eu)
9629 #define GPIO MODER MODE® Msk (0x3UL << GPIO MODER MODE@ Pos) /*1< 0x00000003 */
9630 #define GPIO_MODER_MODE® GPIO_MODER_MODE®_Msk
9631 #define GPIO MODER MODE® @ (8x1UL << GPIO MODER MODE@ Pos) /*1< 0x00000001 */
9632 #define GPIO_MODER_MODE®_1 (0x2UL << GPIO_MODER_MODE@_Pos) /*1< 0x00000002 */
9633
9634 #define GPIO_MODER_MODE1_Pos (20)
9535 #define GPIO_MODER_MODEL Msk (0x3UL << GPIO_MODER_MODE1_Pos) /*1< B8x0000008C */
9636 #define GPIO_MODER_MODE1 GPIO_MODER_MODE1_Msk
9637 #define GPIO_MODER_MODEL_@ (ox1UL << GPIO_MODER_MODE1_Pos) /*1< 0x00000004 */
9632 #define GPIO MODER MODEL 1 (0x2UL << GPIO MODER MODE1 Pos) /*1< 0x00000008 */
9639
9640 #define GPIO MODER MODE2 Pos (au)
9641 #define GPIO_MODER_MODE2_Msk (0x3UL << GPIO_MODER_MODE2_Pos) /*1< 0x00000030 */
9642 #define GPIO_MODER_MODE2 GPIO_MODER_MODE2_Msk
9643 #define GPIO_MODER_MODE2_ @ (0x1UL << GPIO_MODER_MODE2_Pos) /*1< 0x00000010 */
9544 #define GPIO_MODER_MODE2_1 (0x2UL << GPIO_MODER_MODE2_Pos) /*1< Bx00000020 */
9645
9646 #define GPIO_MODER_MODE3_Pos (6U)
9647 #define GPIO MODER MODE3 Msk (0x3UL << GPIO MODER MODE3 Pos) /*1< 0x000000C0 */
96428 #define GPIO_MODER_MODE3 GPIO_MODER_MODE3_Msk
9649 #define GPIO MODER MODE3 @ (8x1UL << GPIO MODER MODE3 Pos) /*1< 0x00000040 */
9650 #define GPIO_MODER_MODE3_1 (0x2UL << GPIO_MODER_MODE3_Pos) /*1< 0x00000080 */
9651
9652 #define GPIO_MODER_MODE4_Pos (8U)
9553 #define GPIO_MODER_MODE4 Msk (0x3UL << GPIO_MODER_MODE4_Pos) /*1< B8x00000300 */
9654 #define GPIO_MODER_MODEA GPIO_MODER_MODEA_Msk
9655 #define GPIO_MODER_MODE4_@ (ox1UL << GPIO_MODER_MODE4_Pos) /¥1< 0x00000100 */
9656 #define GPIO MODER MODE4 1 (0x2UL << GPIO MODER MODE4 Pos) /*1< 0x00000200 */
9657

Vamos substituir as mdscaras usadas nos comandos de configuracdo dos registradores pelas

mascaras definidas na CMSIS.

43=int main(void)

a4 |

45 // Inicializa GPIOB, pino @ (PB®@)

46 //RCC->AHBAENR |= 0x00000802; // GPIOB clock enable
47 | RCC->AHBAENR |= RCC_AHBAENR GPIOBEN Msk;

48

419 // PBB como saida digital

50 //GPIOB->MODER |= 0x00000001 ;

51 //GPIOB->MODER &= @xFFFFFFFD;

52 GPIOB-3>MODER &= ~(GPIO MODER MODE® Msk);

53 GPIOB->MODER |= GPIO MODER_MODE® O:

54

55 //GPIOB->0TYPER &= @xFFFFFFFE; // PB@ como push-pull
56 GPIOB->0TYPER &= ~GPIO OTYPER OT@ Msk:

57

58 /* Loop forever */

59 for(;;) {

60 // GPIOB->ODR &= OxFFFFFFFE; // PBO = @

61 GPIOB->0DR &= ~GPIO_ODR_OD@_Msk;

62 espera(1000); // Gera delay

63 //GPIOB->0DR |= 0x@0000001; // PBO = 1

64 GPIOB->0DR |= GPIO_ODR_OD® Msk; // PBG = 1
65 espera(1000); // Gera delay

66 1

67 }

7. Faca “Build” e execute o projeto para certificar se o LED verde pisca.

8. Agora altere o programa que pisque o LED amarelo para uma versdo que usa a interface CMSIS.
Depois exporte o projeto em um arquivo ZIP para ser incluido no relatério.

DICAS: Além de mudar os nomes dos registradores para RCC->##### ou GPIOE->#####, as
madscaras numéricas devem ser substituidas pelas méascaras da CMSIS.

PYTHONE C

Python ¢ conhecido por sua sintaxe clara e legivel, o que facilita a escrita e manutenc¢ao do codigo.
Em contraste, a sintaxe de C ¢ mais complexa e detalhada, exigindo mais aten¢do aos detalhes.
Python é uma linguagem interpretada de alto nivel para propdsito geral. Ele foi desenvolvido
pelo Guido van Rossum em 1989 com o objetivo de ter uma linguagem que apresenta uma sintaxe
intuitiva, similar a linguagem natural ingl€s, sem precisar se preocupar com a tipagem e o
armazenamento de dados na memoria como a lingagem C. A linguagem C é uma linguagem
compilada de médio nivel, também para proposito geral. Foi inventada pelo Dennis Ritchie em
Bell Laboratories entre 1972—73 para programar sistemas operacionais que antes eram
implementados com uma linguagem de baixo nivel, o assembly. O sistema operacional Unix dos

minicomputadores como DEC DPD7 foi integralmente implementado com linguagem C.

Uma linguagem compilada ¢ aquela que requer a conversao dos c6digos de um programa em codigo
binario especifico da maquina antes de sua execucdo. Por outro lado, uma linguagem interpretada ¢
aquela cujas instrugdes sdao traduzidas em tempo de execucdo, referenciando fungdes
pré-implementadas (built-in functions) e valores de seus argumentos. Devido a auséncia dessa etapa
de interpretagdo durante a execu¢do, o tempo de execugdo de um programa compilado ¢ menor do

que o de um programa interpretado, resultando em um melhor desempenho temporal.

Tipicamente, uma cadeia de ferramentas, conhecida como foolchain, ¢ utilizada para converter
codigos em linguagem C, armazenados em arquivos com extensdo “.c”, em um arquivo executavel
com extensdo “.elf” (executable and linkable format) numa arquitetura ARM. Esse processo
envolve varias etapas: um pré-processador traduz as diretivas de C em arquivos com extensao “.i”,
que contém apenas instru¢des puras de C; um compilador converte essas instrugdes puras de C em
arquivos-objeto com extensdo “.0”, contendo instru¢des de maquina do processador-alvo; e um
ligador (l/inker) junta as instrugdes de diferentes arquivos para construir um arquivo executavel com
extensdo “.elf’. Em cada estagio, diferentes tipos de erros podem ser gerados, e € necessario
corrigi-los antes de avancgar para a proxima etapa. Em contraste, os erros em Python sdo detectados
durante a interpretagdo das instru¢des no momento da execucdo, ja que todas as fungdes

pré-implementadas foram previamente testadas.

.C .C

.0
.h * v x-Nle <
. :[pré—proc] @ré—proc} : !pré—proc.l
h _L _L "Lh

:

compila || compila compila
+ . .
.0 .0 e .0

bibliotecas

elf

Ambas as linguagens compartilham estruturas de controle semelhantes, como comandos de controle
de fluxo de iteragdes (“for”, “while”), comandos de quebra de fluxo (“break”, “continue™), e
comandos condicionais (“if”, e “if-elif-else” em Python ou “if-else if-else” em C). Somente em
Python 3.10 foi introduzido o comando de alternativas “switch-case” de C. Tanto Python quanto C
permitem a defini¢do e chamada de fungdes, promovendo a modularidade do codigo. Ambas as
linguagens incluem operadores aritméticos (+,-,*,/), operadores 16gicos (&&, ||, ! em C; “and”, “or”,
“not” em Python), operadores relacionais (<, <=, >, >=, ==, |=), operadores logicos bit-a-bit (&, |,

~), deslocamentos de bits (<<, >>) e atribui¢do (= em C; := a partir de Python 3.8).

Python usa tipagem dindmica, o que significa que os tipos de dados sdo verificados em tempo de
execugdo. Ja em C, a tipagem ¢ estatica, e os tipos de dados sdao verificados em tempo de
compilacdo, exigindo declaragdo explicita de variaveis. Uma atengdo especial deve ser dada aos
tipos de dados dos resultados de uma operacdo em C. Os tipos de dados dos resultados, sejam
inteiros ou em ponto flutuante, dependem dos tipos dos operandos. Por exemplo, uma operagao
entre dois operandos inteiros sempre resulta em um valor inteiro, mesmo que o resultado
matematico seja uma fragdo. Assim, a operagdo 1/2 resulta em 0, em vez de 0.5. Isso ocorre porque
a divisdo inteira trunca a parte fracionaria do resultado para gerar um tipo de dado consistente com
os operandos. Em contraste, Python usa tipagem dinamica, o que significa que os tipos de dados dos
resultados se ajustam dinamicamente conforme necessario. Em Python, a operagao 1/2 resulta em
0.5, pois a divisdo entre inteiros retorna um nuamero de ponto flutuante. Python ajusta
automaticamente os tipos de dados dos operandos e resultados durante a execucao, permitindo

maior flexibilidade e evitando a necessidade de conversdes explicitas.

Tanto C quanto Python tém sistemas de escopo que determinam a visibilidade de varidveis em

diferentes partes do cddigo. Em C, as variaveis possuem escopo estatico, o que significa que podem

ser globais ou locais a uma fung¢ao especifica. Varidveis globais, declaradas fora de todas as fungdes
dentro de um arquivo, sdo acessiveis em todo o programa, enquanto variaveis locais existem apenas
dentro da fun¢do onde sdo definidas. Em contraste, Python utiliza um sistema de escopo baseado
em indentacdo e na estruturacdo de blocos por meio de espagos em branco, como tabulagdes ou
espacos. As varidveis em Python sdo dinamicamente tipadas e tém escopo local quando definidas
dentro de uma fungdo. Variadveis globais em Python sdo declaradas fora de todas as funcdes do
programa ou explicitamente marcadas como globais dentro de uma fungdo para serem acessadas

globalmente.

J4

C possui o conceito de conversdo implicita de tipos, que ¢ aplicado em operagdes envolvendo
operandos de tipos de dados distintos. Neste caso, os operandos sao promovidos a um tipo de dados
comum, mais abrangente, antes da execucao da operagdo, conforme a hierarquia de “abrangéncia”
mostrada na figura. Por exemplo, se um inteiro e um ponto flutuante sdo usados em uma operagao,
o inteiro ¢ automaticamente promovido a ponto flutuante para garantir que a operagao seja realizada
corretamente. No entanto, C ndo consegue expandir o espaco de memoria previamente alocado pelo
compilador quando uma operagdo requer mais bits. Por exemplo, ao fazer um deslocamento a
esquerda de um bit no valor Ob11000000 de uma variavel do tipo de dados de 8 bits (“char” ou
“bool”), o resultado ¢ 0b10000000, pois o valor excedente ¢ descartado. Em contraste, Python, sem
uma tipagem previamente fixa, consegue realocar o espaco de memoria dinamicamente, permitindo

representar 0b11000000 sem perda de dados.

Implicit Type Conversion

=D

Em termos de gerenciamento de memoria, Python cuida disso automaticamente através de um
coletor de lixo, enquanto C requer que os programadores gerenciem a alocacdo e liberagdo de
memoria manualmente, utilizando fungdes como “malloc” e “free”. Python possui uma vasta

biblioteca padrao e suporte a muitos modulos externos, facilitando o desenvolvimento rapido de

https://www.geeksforgeeks.org/type-conversion-c/

aplicagdes. C também tem bibliotecas, mas o desenvolvimento pode exigir mais cddigo manual e

integracao.

Apesar dessas semelhancas, as diferencas em gestdo de memoria, tipagem, tipos de erros e
execucdo influenciam significativamente a escolha entre Python e C, dependendo das necessidades
do projeto e do nivel de controle requerido sobre o hardware. Devido a facilidade no gerenciamento
de memoria, no tratamento de erros, na geragao de cddigo executdvel e na tipagem dinamica,
Python tem se tornado popular para prototipagem rapida e provas de conceito no desenvolvimento
de projetos em geral. No entanto, essas facilidades comprometem o desempenho e o determinismo
do sistema. Em aplicagdes onde esses fatores sdo essenciais, como em sistemas embarcados, a

linguagem C continua sendo a preferida.

DETALHES DA LINGUAGEM C

A linguagem C oferece uma proximidade significativa com a linguagem assembly através de
operadores entre operandos, manipulagao direta de memoria e declaragdo explicita de variaveis. Sua
capacidade de organizar registradores dos modulos usando estruturas (“struct”), como a
disponibilidade de ponteiros, a tornam especialmente adequada para programagdo de sistemas
embarcados, onde o controle detalhado sobre o hardware é essencial. Ao mesmo tempo, C fornece
um nivel de abstragdo suficiente para facilitar a criacdo de codigo modular e reutilizavel,

equilibrando eficiéncia e legibilidade.

Em C, os operadores sao muito semelhantes aos usados em assembly, permitindo manipulagdes
diretas de bits e bytes. A seguinte tabela mostra a correspondéncia direta entre os operadores
logico-aritméticos e relacionais da linguagem C e algumas instrugdes do repertério ARM Thumb-2
do Cortex-M7.

C Descrigao ARM Thumb-2 (Cortex-M7)
+ Adigao ADD, VADD
- Subtracao SUB, VSUB
* Multiplicagdo MUL, VMUL
/ Divisao SDIV, UDIV, VDIV
% Resto da divisao -
++ Incremento ADD (imediato)
-- Decremento SUB (imediato)
& E logico bit a bit AND

Ou logico bit a bit ORR
A Ou exclusivo bit a bit EOR
~ Complemento de bits MVN
<< Deslocamento para esquerda | LSL
>> Deslocamento para direita LSR
&& E légico CMP e bits de condi¢ao
| Ou logico CMP e bits de condigao
! Negagao logica VNEG
= Igual a CMP e bits de condi¢do
I= Nao ¢ igual a CMP e bits de condigdo
> Maior que CMP e bits de condigao
< Menor que CMP e bits de condicao
>= Maior ou igual a CMP e bits de condigao
<= Menor ou igual a CMP e bits de condicdo

Vale destacar que a linguagem C suporta versdes contraidas de operagdes logico-aritméticas,
chamadas de operadores compostos. Estes operadores permitem realizar operagdes aritméticas e
logicas de forma mais compacta e eficiente, combinando a operagdo e a atribui¢do em uma Unica

expressdo. Por exemplo, ao invés de escrever “x = x +5;”, vale também “x += 5;”.

A declaracdo de variaveis em C ¢ explicita e requer que o programador especifique o tipo de dados
e o nome da varidvel. Isso ¢ semelhante a reserva de espago de memoria em assembly, onde cada
espaco ¢ definido por diretivas como “.byte” (1 byte) e “.word” (4 bytes em ARM), que determinam

o tamanho do espaco a ser alocado e, muitas vezes, inicializam o espago com um valor especifico.

Em C, os tipos de dados ndo apenas definem como os dados sdo armazenados na memdoria, mas
também como sdo interpretados pelo compilador. Eles determinam quais operagdes matematicas e
logicas podem ser aplicadas aos dados. Todas as variaveis utilizadas devem ser previamente
declaradas com um tipo de dados para que o compilador possa reservar o espago necessario na

memoria e garantir que as operagdes apropriadas possam ser realizadas sobre elas.

Os tipos de dados podem ser divididos em tipos basicos e tipos derivados. Os tipos de dados bésicos

incluem:

int: Representa nimeros inteiros.

char: Armazena caracteres individuais, como letras e simbolos. Internamente, ¢ tratado como um

numero inteiro de 8 bits..

float: Representa numeros de ponto flutuante de precisao simples. E usado para valores com casas

decimais com até 8 bits de expoente.
double: Representa numeros de ponto flutuante de dupla precisdo com até 11 bits de expoente.

void: Representa um tipo de dado que ndo possui valor ou tipo especifico. E utilizado para criar

fungdes que ndo precisam retornar um valor ou para trabalhar com ponteiros de tipos indefinidos.

Para todas as varidveis de tipos de dados que possuem valor, ¢ possivel acessar seu endereco de
memoria usando o operador ‘&’. Por exemplo, para uma varidvel ‘a’ declarada como do tipo “char”

com o comando “char a;”, podemos obter o enderego de ‘a’ utilizando a sintaxe “&a”.

Os tipos derivados permitem estruturar dados de maneira mais complexa e sdo construidos a partir

dos tipos basicos. Entre os tipos de dados derivados estao:

Arranjos: Colecoes de elementos do mesmo tipo, acessados por um indice. Sao tipos derivados

porque sdo construidos a partir de tipos basicos.

Structs: Estruturas que permitem combinar diferentes tipos de dados sob um unico nome. Cada
elemento dentro de uma estrutura pode ter um tipo diferente. Para acessar esses elementos,
utiliza-se o operador ‘->’ quando a variavel ¢ um ponteiro do tipo struct, € o operador *.” quando ¢

um valor direto do tipo struct.

Union: Similar a uma struct, mas todos os elementos compartilham o mesmo espago de memoria. A
unido ¢ Util quando se deseja economizar espago, mas sO se precisa armazenar um tipo de dado por

VeZ.

Enumeracdes (enum): Define um novo tipo de dados que pode assumir um nimero limitado de

valores, que sdo enumerados explicitamente.

Ponteiros: Varidveis que armazenam enderecos de memoria alocados para um tipo de dado
especifico. Eles permitem a manipulagdo direta da memoria e sao essenciais para a alocagao
dindmica de memoria, bem como para a passagem de pardmetros por endereco. Para declarar um
ponteiro para um tipo de dado X, usamos a sintaxe “X *”. Por exemplo, para declarar ponteiros para
os tipos de dados “int” e “float”, utilizamos “int *”” ¢ “float *”, respectivamente. Pode-se também
acessar o conteudo de um ponteiro, usando o operador ‘*’. Por exemplo, para um ponteiro ‘b’
declarado como do tipo “char *” com o comando “char *b;”, podemos obter o conteudo de ‘b’

utilizando a sintaxe “*b”.

C suporta a palavra-chave typedef, interpretada diretamente pelo compilador como parte da sintaxe
da linguagem. Esta palavra ¢ usada para criar novos nomes para tipos de dados existentes. Isso pode

ajudar a tornar o codigo mais legivel e portatil.

Em C, os qualificadores de tipos de dados siao palavras-chave que modificam os comportamentos
padrao dos tipos de dados basicos. Eles sdo usados para especificar certas propriedades ou
restricdes adicionais sobre como os dados devem ser tratados ou armazenados pelo compilador.

Seguem-se os principais qualificadores:

const: ¢ um modificador de tipo que indica que o valor de uma variavel nao pode ser alterado apos
sua inicializagdo. Isso significa que uma vez atribuido um valor, esse valor nao pode ser modificado

através dessa variavel.

volatile: ¢ um modificador de acesso, indicando que o valor de uma varidvel pode ser alterado
inesperadamente por processos externos ao programa. Isso previne otimizagdes de compilador que
poderiam, de outra forma, assumir que o valor ndo muda. E frequentemente usado para variaveis

acessadas por multiplas threads ou por dispositivos de hardware.

signed ¢ unsigned: sdo modificadores que determinam como o bit mais significativo dos tipos de
dados numéricos inteiros (int, char, short, long) deve ser interpretado: como um bi¢t de sinal
(“signed”) ou um bit numérico (“unsigned”). Por padrdo, os tipos inteiros em C sdo “signed” (com
sinal). Portanto, “unsigned” (sem sinal) deve ser utilizado explicitamente quando se deseja trabalhar

apenas com numeros nao negativos.

static: ¢ um modificador do escopo e a duracdo de vida de uma varidvel. Em vez de ser criada e
destruida a cada chamada de fung@o, uma variavel static persiste durante a execug¢do do programa,

mas apenas acessivel na fungdo em que ela ¢ declarada.

Em C, valores inteiros podem ser representados em bases binaria, decimal, octal e hexadecimal. A
decimal ¢ a base padrdo e usa os digitos de 0 a 9. A bindria, que s6 usa os digitos 0 e 1, é prefixada
por “Ob”. A octal utiliza os digitos de 0 a 7 e ¢ prefixada com “0”. A hexadecimal usa os digitos de
0a9easletras de ‘A’ a ‘F’ (ou ‘a’ a ‘f’), sendo prefixada com “0x” ou “0X”. Por exemplo, 10,
0b1010, 012 e 0xA sdo representacdes do mesmo valor numérico em diferentes bases em C. Um
nimero em ponto flutuante pode ser representado em notagdo decimal (por exemplo, 4.15) ou em
notagdo cientifica (por exemplo, 0.415¢e1, que equivale a 4.15). Um caractere, tipicamente um valor
em ASCII, ¢ escrito entre aspas simples, como ‘A’ e ‘a’. Uma string em C ¢ um arranjo de
caracteres terminado com um caractere nulo (‘\0’). Pode ser escrita entre aspas duplas. Por
exemplo, a string “Bom dia!” ¢ representada como um arranjo de caracteres através da declaracao:
“char str[9]= “Hello™;”.

O uso de fungdes em linguagens de programagdo ndo s6 melhora a estrutura e organizag¢do do
codigo, mas também promove a modularidade, a reutilizagdo de codigo, a abstragdo de
complexidade e facilita a manuten¢do do software. A estrutura basica de uma funcdo em C
compreende a sua declaracdo e defini¢do. Na declaragdo, especificamos o tipo de dado que a fungdo
retorna, o nome da func¢do (Unico dentro do escopo onde ¢ definida), e a lista de pardmetros que sao
variaveis que a fun¢do recebe como entrada e podem ser modificadas. Os pardmetros sao opcionais
e podem ser de qualquer tipo vélido na linguagem. Mesmo sem pardmetros, os parénteses vazios
ainda sdo necessarios. A definicdo da funcdo, por sua vez, consiste em trés partes: declaragdo de

variaveis locais, execugdo de comandos que operam sobre essas varidveis, e retorno de um valor

<tipo_de dado_retorno> <nome da funcao> (<lista de parametros>) {
// Declaragao de variaveis locais

/I Execu¢ao de comandos

// Retorno de valor (se houver)

}

Em C, o mecanismo de chamada de fung¢des definidas segue os seguintes passos basicos:

chamada da funcfo: para chamar uma funcgdo, utiliza-se seu nome seguido por parénteses
contendo os argumentos necessarios.

passagem de parametros: os parametros podem ser passados para a fungdo de duas maneiras: por
valor do contetido da memoria (dado) e por valor de endereco da memoria (endereco). Quando se
passa por valor, o valor real do argumento ¢ copiado para o pardmetro da fun¢do. Modificagdes no
parametro dentro da fun¢do nao afetam o argumento original. E quando se passa por endereco, ou
ponteiro, o endereco do argumento € passado como parametro para a fun¢do. Isso permite a funcao
acessar e modificar diretamente o valor do argumento original na memoria.

execucio da funcgio: dentro da funcdo, os parametros podem ser manipulados usando diretamente a

variavel se a passagem ¢ por valor, ou a variavel precedido de ‘*’ se é por valor de endereco.

C ¢ equipada com diretivas de pré-processador precedidas por ‘#’, ou mecanismos que ajudam a

definir constantes, incluir arquivos de cabegalho, e criar novos tipos de dados:

#define: ¢ usada para definir macros, que sdo substitui¢des de texto realizadas pelo pré-processador
antes da compila¢do. Pode ser usada para criar constantes ou macros mais complexas com

argumentos.

#include: ¢ usada para incluir o contetdo de um arquivo de cabecalho no codigo fonte. Isso permite

a reutilizacdo de codigo e a separagdo de declaracdes e definicdes em diferentes arquivos.

#ifdef, #ifndef, #if, #else, #elif, #endif: essas diretivas sao usadas para incluir ou excluir partes do
codigo com base em condigdes, permitindo a compilagdo condicional. Isso € particularmente util

para configurar compilagdo especifica para diferentes ambientes ou configuragdes de hardware.

Em C, o cédigo ¢ tipicamente dividido em arquivos de codigo-fonte (de extensdo .c) e arquivos de
cabegalho (de extensdo .h). Arquivos de codigo-fonte em C sdo arquivos que contém a
implementagdo de um procedimento, incluindo definicdes de fungdes, variaveis, e a logica do
programa. Arquivos de cabecalho geralmente contém declaragdes de funcdes, varidveis globais,
macros, e tipos de dados (structs, enums, typedefs) que podem ser usados em multiplos arquivos de
codigo-fonte. Isso permite que diferentes arquivos de codigo-fonte compartilhem essas declaragdes
sem duplicacdo. Essa divisdo serve para organizar € modularizar o codigo, facilitando a reutilizagdo

€ a manutencao.

A medida que avangamos ao longo deste curso, exploraremos o uso dessas funcionalidades de C
para otimizar e configurar nossos projetos de acordo com os requisitos especificos de hardware e

software.

PROGRAMACAO C EM MICROCONTROLADORES

Em programagao de microcontroladores, ¢ comum usar os tipos de dados unit* t e int* t (onde *
representa o tamanho em bits, como uint8 t, int16 t, etc.) em vez do tipo de dados nativo int. Esses
tipos sdo definidos no cabecgalho <stdint.h> da biblioteca padrao do C. A portabilidade ¢ um dos
principais motivos. Usar esses tipos garante que o tamanho do tipo de dados sera o mesmo em
qualquer plataforma. Isso ¢ crucial na programacdo de microcontroladores, onde o tamanho dos
tipos de dados pode variar entre diferentes arquiteturas. O programador pode prever exatamente
quantos bits serdo usados para armazenar uma variavel, o que ¢ essencial para manipulagdo dos
registradores do microcontrolador e protocolos de comunicagdo. O controle e a precisdo sao
também importantes. Em sistemas embarcados, a memoria ¢ um recurso escasso. Usar tipos de
dados com tamanho especifico ajuda a gerenciar a memoria de maneira eficiente, garantindo que
ndo se use mais memoria do que o necessario e evitando problemas de overflow. Operacdes bit a bit

requerem precisdo no tamanho dos dados para configuragdes a nivel de bits.

A conversdo explicita em C, também conhecida como casting ou typecast, permite ao programador
informar ao compilador como interpretar um determinado valor. Isso € particularmente util quando
¢ necessario diferenciar entre valores inteiros e enderegos de memoria, duas entidades que, em
sistemas embarcados, frequentemente compartilham o mesmo espago de bits, mas tém significados
distintos. Em um sistema de microcontrolador, essa distingao ¢ crucial para a manipulagdo direta

dos registradores de microcontrolador, cujos enderecos sdo representados por valores inteiros. Por

exemplo, para explicitar que 0x58024540 ¢ um enderego de memoria, podemos usar o comando
“(uint32_t *)0x58024540” para converter o valor 0x58024540, que por padrao ¢ do tipo “uint32 t”,
para um tipo “uint32 t *”, indicando que se trata de um endereco de memoria cujo contetido ocupa

4 bytes.

Para minimizar a quantidade de registradores nos periféricos, varios bits funcionalmente
independentes sdo compactados em um unico registrador, de modo que as operagdes devam ser
realizadas bit a bit. Podemos construir diferentes mascaras de bits que nos permitem manipular
alguns bits especificos de um registrador sem afetar os outros. Denominamos essa operacao de
mascaramento. Trés das mascaras de bits mais utilizadas na programacao de microcontroladores
sdo:

mascara de OU (OR logico, bit a bif) ou mascara de 1: seta um ou mais bits em 1 sem afetar os
demais. A mascara deve ter valor ‘1’ nos bits correspondentes aos bits que se deseja setar.

mascara de AND (AND logico, bit a bit) ou mascara de 0: reseta um ou mais bits em 0 sem afetar
os demais. A mascara deve ter valor ‘1’ nos bits correspondentes aos bits que ndo se deseja alterar.
A mascara deve ter valor ‘0’ nos bits correspondentes aos bits que se deseja resetar.

mascara de OU exclusivo (XOR logico, bit a bif): inverte um ou mais bits sem afetar os demais. A

mascara deve ter valor ‘1’ nos bits correspondentes aos bits que se deseja inverter.

Por exemplo, para configurar o pino PBO como um pino de saida, ¢ necessario definir os bits [1:0]
do registrador GPIOB_MODER como “01”. Isso ¢ feito através de duas operacdes logicas bit a bit:
primeiro, aplicando uma mascara AND com OxFFFFFFFC para limpar os dois bits alvo; em
seguida, utilizando uma mascara OR com 0x00000001 para definir o bit “0” como “1”:
GPIOB_MODER &= 0xFFFFFFFC;

GPIOB_MODER |= 0x00000001;

Em vez de realizar operagdes bit a bit separadas, podemos também criar uma palavra com todos os
bits de controle configurados e fazer uma unica atribuicdo dos bits quando o acesso de escrita
simultaneo desses bits ¢ imprescindivel:

uint32_t tmp;;

tmp = GPIOB_MODER;

tmp &= OxFFFFFFFC;

tmp |= 0x00000001;

GPIOB_MODER = tmp;

Em programacao de microcontroladores, uma pratica comum ¢ a abstragcao dos registradores de um
modulo, que sdo mapeados em um espago contiguo de enderegos de memoria, utilizando a estrutura
de dados “struct” em C. Essa técnica organiza de forma clara e acessivel os registradores,
facilitando o desenvolvimento e a manutengdo do codigo. Vamos considerar a definicdo de uma
“struct” no arquivo de cabecalho <stm32ha3xxq.h> do padrdo de interface CMSIS (do inglés
Cortex Microcontroller Software Interface Standard). Aqui estd um exemplo de definicdo de uma

“struct” para o moédulo GPIO:

typedef struct {
__IOuint32_t MODER; /*!< GPIO port mode register, Address offset: 0x00 */

__ 10 uint32_t OTYPER; /*!< GPIO port output type register, Address offset: 0x04 */
__10uint32_t OSPEEDR; /*!< GPIO port output speed register, Address offset: 0x08 */
__I0uint32 t PUPDR; /*!< GPIO port pull-up/pull-down register, Address offset: 0x0C */
__10 uint32_t IDR; /*!< GPIO port input data register, Address offset: 0x10 */
__10uint32_t ODR; /*!< GPIO port output data register, Address offset: 0x14 */

__ 10 uint32 _t BSRR; /*!< GPIO port bit set/reset, Address offset: 0x18 */

__ IO uint32_t LCKR; /*!< GPIO port configuration lock register, Address offset: 0x1C */
__ 10 uint32_t AFR[2]; /*!< GPIO alternate function registers, Address offset: 0x20-0x24 */
+ GPIO_TypeDef;

Esta “struct”, nomeada como GPIO_TypeDef, agrupa todos os registradores do médulo GPIO, que
sdo mapeados em um espaco contiguo de memoria. Cada elemento da “struct” representa um
registrador especifico do médulo GPIO. Alguns deles ja vimos no Roteiro 1:

__TO uint32_t MODER: Registrador que controla se cada pino do modulo ¢ configurado como
entrada, saida, fun¢do alternativa ou analdgica. O offset de endereco ¢ 0x00.

__T10 uint32_t OTYPER: Registrador que define se as saidas sdo push-pull ou open-drain. O offset
de endereco é 0x04.

__TO uint32_t OSPEEDR: Registrador que configura as velocidades de comutagdo dos pinos de
saida. O offset de endereco ¢ 0x08.

__TO uint32_t PUPDR: Registrador que configura os resistores de pull-up e pull-down para os
pinos de entrada. O offset de enderego ¢ 0x0C.

__T10 uint32_t IDR: Registrador de dados de entrada do modulo GPIO, utilizado para ler o estado
dos pinos configurados como entradas. O offset de enderego ¢ 0x10.

__TO uint32_t ODR: Registrador de dados de saida do modulo GPIO, utilizado para escrever os
valores nos pinos configurados como saidas. O offset de endereco ¢ 0x14.

__TO uint32_t BSRR: Registrador que permite a manipulagdo atdmica dos pinos, configurando ou
resetando individualmente os pinos do médulo. O offset de endereco é 0x18.

__10 uint32_t LCKR: Registrador de bloqueio de configuracdo do modulo GPIO, utilizado para
bloquear a configuracdo dos pinos, prevenindo modificagdes acidentais. O offset de endereco ¢
0x1C.

__10 uint32_t AFR|2] (0x58020420): Registradores de fun¢do alternativa do modulo GPIO, que
permitem configurar fungdes alternativas para os pinos, como UART, SPI, etc. Existem dois

registradores para acomodar até 16 pinos. O offset de enderego é 0x20-0x24.

Para usar a struct “GPIO TypeDef” e acessar os registradores do médulo GPIO, geralmente um
ponteiro para a struct ¢ definido, apontando para o endereco base do modulo GPIO. Por exemplo,
para o GPIOB, cujo intervalo de endereco ¢ 0x58020400 - 0x580207FF,

https://www.dca.fee.unicamp.br/cursos/EA701/STM32/rm0455-stm32h7a37b3-and-stm32h7b0-value-line-advanced-armbased-32bit-mcus-stmicroelectronics.pdf#page=132

)= Variables % Breakpoi.. 7 Expressio.. ¥ Registers &7 Live Expr.. @8 SFRs X
X B

All registers

type filter text

Register Address Value
~ & GPIOB

i MODER 0x58020400 Oxfffffebd
it OTYPER 0x58020404 0x0
it OSPEEDR 0x58020408 OxcO
il PUPDR 0x5802040c 0x100
it IDR 0x58020410 0x10
it ODR 0x58020414 0x0
it BSRR 0x58020418
ol LCKR 0x5802041c 0x0
il AFRL 0x58020420 0x0
ol AFRH 0x58020424 0x0

podemos converter explicitamente o valor 0x58020400 para um ponteiro de struct

“GPIO_TypeDef” da seguinte maneira
#define GPIOB ((volatile GPIO_TypeDef *) 0x58020400)

Com essa defini¢do, podemos acessar os seus elementos, que sdo registradores do GPIOB, usando
mnemonicos como GPIOB->MODER, GPIOB->OTYPER ou GPIOB->ODR. Este ¢ o padrao
adotado pelo CMSIS para criar os mnemoOnicos dos registradores de um microcontrolador:
<MODULO>-><Registrador>. Os arquivos de cabegalho sdo amplamente utilizados em programas
de microcontroladores. Um exemplo notavel sdo os arquivos do padrao de interface CMSIS, que

padroniza uma série de mnemonicos e facilita a programagdo dos microcontroladores.

Embora a programagao em C seja muitas vezes suficiente e mais legivel, € comum precisar de um
controle mais granular sobre o hardware e a execucdo do cddigo em programagdo de
microcontroladores. Esse nivel de controle pode ser obtido através da insercao de codigo assembly
diretamente em um programa C, utilizando o recurso de inline assembly, que ¢ uma extensao

oferecida pelos compiladores. A sintaxe basica para o uso do inline assembly no GCC ¢é

asm [qualificadores] (instrugdes asm
: Operandos_de saida
[: Operandos de entrada

[: Clobbers]])

O qualificador mais utilizado ¢ o “volatile”, que indica ao compilador que o codigo assembly deve
ser tratado de forma especial, sem otimizagdes que possam alterar o comportamento pretendido. As
“instrugdes_asm” sdo fornecidas como strings literais e sdo passadas diretamente para o montador,
sem modificacdes pelo compilador. Para formatar o cédigo assembly de maneira legivel,

frequentemente utilizam-se caracteres de controle como ‘\n’ (nova linha) e ‘\t’ (tabulagdo), que

https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html

ajudam a separar e organizar as instru¢cdes no formato tradicional de assembly, garantindo que o
montador receba e interprete as instrugdes corretamente. O termo “Clobbers” se refere a uma lista
de registradores ou variaveis que o codigo assembly pode modificar durante sua execucao. Em
inline assembly, isso é importante porque o compilador precisa saber quais recursos sdo alterados
pelo codigo assembly para gerar o codigo apropriado e evitar otimizagdes que poderiam resultar em

comportamento incorreto.

O formato de um operando de saida em Operandos_de saida, associado ao nome <variavelC> em
C,é:

[[<nomeSimbolico]] “<restri¢desS>" (<variavelC>)

Para referenciar um operando usando o nome simbolico dentro das instrugcdes em assembly,
devemos usar a notacdo %[nomeSimbolico]. Se um nome simbodlico ndo for especificado
explicitamente, os operandos sdo referenciados por seus valores posicionais em
Operandos_de saida, com %0 para o primeiro operando, %1 para o segundo, e assim por diante. A
lista <restricdes> geralmente comega com =(para sobreescrever o valor existente) e € seguida por
restrigdes como r (registrador), m (endereco de memoria) ou rm (preferéncia por registrador ou
memoria). Essas restri¢des indicam ao montador onde alocar preferencialmente o operando durante

o processamento das instrucdes.

O formato de um operando de entrada em Operandos_de entrada, associado ao nome <varidvelC>
em C, é:

[[<nomeSimbdlico]] “<restricoesE>" (<varidvelC>)

Assim como em operando de saida, podemos atribuir um nome simbdlico a um operando em
Operandos_de entrada ou usar valores posicionais a partir do ultimo valor posicional atribuido aos
operandos de saida. A lista <restrigdesE> especifica os locais onde o operando pode ser armazenado
durante o processamento das instru¢des em assembly. Ela pode também conter o valor posicional de
um operando de saida, o que significa que o operando de entrada e o operando de saida

compartilham o mesmo local de armazenamento.

O formato de um operando de Cobbers é:
“<recursos>"

Aqui, um recurso ¢ tipicamente um registrador (por exemplo, 10, rl etc.), um espago de memoria

(memory) ou o registrador de status (cc) que ¢ utilizado pelas instrucdes de assembly.

Abaixo esta um exemplo de inline assembly que implementa a operacao “counter = counter +1;” em
C. Neste codigo, “counter” ¢ utilizado tanto como operando de entrada quanto de saida. No inline
assembly, isso € feito com o “counter” localizado no lado direito (entrada) e no lado esquerdo
(saida) da atribuig¢@o. Os parametros de entrada e saida sdo designados de forma distinta com base

na posicao e na funcao do operando na lista de entrada e saida. Portanto,

%0 para se referir ao operando de saida (counter na primeira linha iniciada com :”).

%1 para se referir ao operando de entrada que ¢ a mesma variavel (counter na segunda linha
iniciada com :’).

Para garantir que o montador use o mesmo registrador para ambos os operandos, ¢ através das
restricdes especificamos o compartilhamento de registradores por esses operandos. A restricdo do
operando “%0” ¢ "=r", indicando que ¢ um operando que pode ser sobreescrito ¢ deve ser
armazenado preferencialmente em um registrador, sem especificar qual registrador. E a restri¢cao do

operando “%1” ¢ “0” indicando que usa o mesmo registrador usado pelo operando “%0”.

int counter=0;
for (;;) {
asm ("mov rl, %1 \n\t"

"add r1, #1 \n\t"
"mov %0, r1 \n\t"
: "=r" (counter)
:"0" (counter)
: "rl n

);

b

Ressalta-se aqui a auséncia de fungdes de entrada e saida, como aquelas definidas no arquivo de
cabecalho “stadio.h” da biblioteca padrdo de C, em muitos ambientes de programagdao de
microcontroladores. Isso se justifica pela necessidade de uma interagdo mais direta e personalizada
com os periféricos do hardware. Diferentemente de sistemas operacionais de alto nivel que
abstraem a comunicagdo com dispositivos através de fungdes genéricas, a programagdo de
microcontroladores exige que o desenvolvedor configure e gerencie diretamente os registradores
dos modulos de comunicacdo com os periféricos integrados nos microcontroladores. Essa
abordagem permite um controle mais preciso e eficiente sobre como os dados sao lidos e escritos,
adaptando a comunicagdo as especificidades de cada dispositivo, como portas seriais, ADCs, ou
timers. Ao longo da disciplina, exploraremos como essas configuracdes diretas sdo essenciais para o
funcionamento adequado dos sistemas embarcados, mostrando a importancia de entender a
comunicacdo em um nivel mais detalhado do que o fornecido pelas abstracdes de bibliotecas

padrao.

TOOLCHAINS

O STM32CubelDE oferece um conjunto completo de ferramentas (toolchain) para geragao de
cddigos executaveis no microcontrolador STM32H7A3ZIT6-Q a partir de duas linguagens de
médio nivel, C e C++. O GNU Arm Embedded Toolchain, desenvolvido e mantido pela FSF (do

inglés Free Software Foundation), ¢ a ferramenta fundamental por tras desse processo. O

STM32CubelDE inclui um editor de codigo-fonte baseado no Eclipse, um compilador cruzado

(cross compiler) GCC para ARM (“arm-none-eabi-gcc’), um montador cruzado (cross assembler)

https://developer.arm.com/downloads/-/gnu-rm

GCC para ARM (“arm-none-eabi-as”), um ligador cruzado (cross linker) GCC para ARM
(“arm-none-eabi-ld”’) e um depurador cruzado (cross debugger) GDB (“arm-none-eabi-gdb”). O
termo "cruzado" (cross) € utilizado para indicar que a compilacdo, montagem e ligacdo dos
programas sdo realizadas em um computador, comumente denominado #host, diferente do
microcontrolador-alvo, onde as instrugdes sdo efetivamente executadas. Da mesma forma, a

depuracao do fluxo de controle executado no microcontrolador-alvo € realizada a partir de um /ost.

A figura a seguir ilustra as etapas de transformacao dos enderegos das instrugdes para trés fungdes
diferentes de um mesmo programa ao longo de um foolchain. Cada fungdo ¢ compilada
separadamente, atribuindo a cada instru¢do um endereco de memoria correspondente ao seu
deslocamento em relagdo ao endereco inicial (0) da funcdo. O ligador entdo combina essas fungoes,
ajustando os enderecos das instru¢des para garantir que nao haja sobreposi¢do e estabelecendo um
endereco inicial comum (0) para todas as fungdes. Além disso, o ligador inclui o codigo de
inicializagdo (Resef) recomendado pelo fabricante. Finalmente, com base na defini¢do do /ayout da
memoria, a ferramenta de carregamento transfere o codigo executavel e os dados para as memorias

Flash e RAM do microcontrolador, preparando-o para execugao.

Enderecos relativos a "origem” Enderecos relativos ao))
de cada bloco programa executavel Enderegos da memdria efetivos
0 Y Reset Y
0x85C Reset
main x multiplo_iteracoes 0xB98
multiplo_iteracoes
m
espera Ox8b4
D / espera
multiplo_iteracoes
0OxBfc
n .
main
main
o
espera
p

