DISCIPLINA EA701

Introducao aos Sistemas Embarcados

ROTEIRO 4: Organizacio de Memoria e Tipos de Dados em C

TECNOLOGIAS DE MEMORIA, ALINHAMENTO E
ORDENACAO DE BYTES, MAPA E SEGMENTACAO DE
MEMORIA, MEMORIA CACHE E MEMORIA FORTEMENTE
ACOPLADA (TCM), SISTEMA DE MEMORIA NO
STM32H7A3ZIT6-Q, TIPOS DE DADOS EM C.

Profs. Antonio A. F. Quevedo ¢ Wu Shin-Ting

FEEC / UNICAMP

Revisado em agosto de 2024

This work is licensed under Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 International. To view a copy of this
license, visit https://creativecommons.org/licenses/by-nc-sa/4.0/

https://creativecommons.org/licenses/by-nc-sa/4.0/

INTRODUGAO 2

UM PROJETO-EXEMPLO PARA EXPLORAR MEMORIA 3
TECNOLOGIAS DE MEMORIA: PROM, EPROM, EEPROM, FLASH NAND, NOR, SRAM e
DRAM 12
MAPA DE MEMORIA 16
ALINHAMENTO DE DADOS 19
ORDENAGAO DOS BYTES 20
SEGMENTACAO DE MEMORIA PRINCIPAL 21
MEMORIA CACHE 24
MEMORIA FORTEMENTE ACOPLADA (TCM) 28
SISTEMA DE MEMORIA NO STM32H7A3 28
TIPOS DE DADOS EM C 30
INTRODUCAO

A memoria ¢ um componente fundamental em todos os sistemas computacionais. Nela sdo
armazenadas as instrugdes a serem executadas (cddigo), bem como os valores de variaveis
usadas (dados) pelo programa. Os microcontroladores costumam ter a memoria incluida no
chip, ¢ alguns deles ainda permitem configurar parte de seus pinos para acesso a
componentes de memoria externos a0os mesmos.

Os dois tipos de memoria mais usados em microcontroladores sao a tecnologia FLASH e a
SRAM. A memoria FLASH ¢ uma memoria ndo-volatil (preserva o conteudo mesmo sem
energia) que pode ser apagada e gravada em blocos, e ¢ normalmente usada para armazenar
de forma semi-permanente o codigo a ser executado, ao mesmo tempo permitindo que o
codigo seja modificado e regravado a partir de fontes externas, um processo que acontece
rotineiramente em atualizagdes de firmware nos equipamentos. A memodria SRAM, ou RAM
estatica, € uma memoria volatil (perde os dados ao ser retirada a energia) com um custo €
tamanho maiores que os da memoria DRAM (RAM dinamica), porém de maior velocidade e
sem depender de um controlador especifico. Para quantidades de memodria RAM nao muito
grandes, como ¢ comum em microcontroladores, a SRAM ¢ ideal. Esta memoria ¢
normalmente usada para armazenar os valores de varidveis, na forma de alocagdo estatica,
heap ou stack, dependendo do tipo de informagao armazenada.

Um fator que determina o uso de certos tipos de memoria é sua velocidade. A memoria
SRAM ¢ mais rapida que a FLASH para a leitura. Sistemas computacionais de maior porte
costumam carregar uma copia da parte do codigo em uma memodria SRAM dedicada para

acesso mais rapido, sendo esta memoria denominada meméoria cache. Apesar de ndo ser tao
comum em sistemas microcontrolados, alguns microcontroladores, como o
STM32H7A3ZIT6-Q, possuem cache para otimizar a velocidade de execugdo. Entretanto, o
gerenciamento desta memoria ¢ algo bastante complexo. A TCM (do inglés Tightly Coupled
Memory) € mais comumente encontrada em microcontroladores e sistemas embarcados, onde
a proximidade e a alta velocidade de acesso sdo essenciais para o desempenho de tarefas
especificas. Esta memoria especial ¢ projetada para operar extremamente proxima ao
processador, oferecendo laténcias muito baixas e alta largura de banda.

Neste roteiro, veremos a organizag¢do dos diferentes tipos de memoria, bem como seu uso
pelos diversos tipos de dados.

UM PROJETO-EXEMPLO PARA EXPLORAR MEMORIA

1. Crie um projeto denominado “Memoria”, da mesma forma que foi feito nos roteiros
anteriores. Apague o codigo-fonte do arquivo “main.c” e o preencha com o seguinte codigo:

#include <stdint.h>
#include <malloc.h>
#include <string.h>
// Variaveis Globais inicializadas, armazenadas no segmento ""data"
uint8_t global_varl =42;
/I Variaveis Globais Nao-inicializadas, armazenadas no segmento ""BSS"
uint32_t uninitialized_varl;
// Variaveis constantes, armazenadas no segmento Rodata (FLASH)
const uint32_t const_varl = 100;
/I Variavel para demonstrar alocacao no "heap' e strings
char *heap_var;
// Qutras variaveis a serem usadas na demonstracao
uint8_t *usig;
int16_t *sig;
intl16_tk;
// Funcao para demonstrar o uso de qualificador register e static
uint32_treg_demo(uint32_tv) {
//Var local
uint16_t reg local;
// ' Var local com qualificador register
register uint32_t reg_var;
// Variaveis estaticas, armazenadas no segmento "data"
static uint8_t reg_static_varl = 10;
reg_local = const_varl;

reg var=v +1;

reg_static_varl++;

if (reg_static_varl == 0xff) reg_static_varl = 0;
return reg_var;

}
volatile uint32_t *RCC_AHB4ENR = ((uint32_t *)0x58024540);

volatile uint32_t *GPIOB_MODER = ((uint32_t *)0x58020400);
volatile uint32_t *GPIOB_OTYPER = ((uint32_t *)0x58020404);
volatile uint32_t *GPIOB_ODR = ((uint32_t *)0x58020414);

#define ITERACOES 5000
int main(void)
{
struct mallinfo mi;
uint32_ti;
float *fp;
float x;

//Aloca 100 bytes para o vetor heap_var com 100 elementos do tipo
/Ichar. Observe a conversao explicita de tipo de retorno "void"
//da funcao malloc para "char *"

heap var = (char *)malloc(sizeof(char) * 100);

/IAtribuir 200 a heap_var[0] que é equivalente a *heap_var
*heap_var = 200;

//Ler a informacao sobre alocacao de memoria

mi = mallinfo();

global_varl++;

uninitialized_varl =5;

/lconst_varl++;

global_varl =reg_demo(10);

/I'A funcao copia a segunda string na primeira

// Por padrao, as variaveis processadas pelas funcoes da biblioteca
// "string" sao do tipo "char"

strepy(heap_var, "This is a NULL-terminated String');

// Muda o espaco alocado

/I Observe a conversao explicita do tipo de variavel heap var
heap_var = (char *)realloc(heap_var, sizeof(uint8_t) * 200);

mi = mallinfo();

usig = (uint8_t *)0xAABBCCDD;

sig = &k;

k=-10;

fp = &x;

*fp = 3.375;

*RCC_AHB4ENR = *RCC_AHB4ENR | 0x00000002;
*GPIOB_MODER = (*GPIOB_MODER | 0x00000001) & 0xFFFFFFFD);
*GPIOB_OTYPER = *GPIOB_OTYPER & 0xFFFFFFFE;

for(;;) {

*GPIOB_ODR = *GPIOB_ODR & 0xFFFFFFFE; //PB0 = 0;
for (i=0; i<ITERACOES:; i++); // Espera

*GPIOB_ODR |= *GPIOB_ODR | 0x00000001; /PB0 = 1;
for (i=0; i<ITERACOES; i++); // Espera

}

Observe o uso do tipo de dado “struct mallinfo”. Este tipo de dado é fornecido por algumas
implementagdes da biblioteca padrdo de alocacdo dindmica de memdria, como a GNU C
Library (glibc). Ele ¢ utilizado para fornecer informagdes sobre a alocagdo de memoria em
um programa que usa a funcdo “malloc”, por meio da chamada da fun¢do “mallinfo()”. Para

que o compilador possa utilizar o tipo “struct mallinfo” e a fungdo “mallinfo()”, é necessario
incluir o arquivo de cabegalho “malloc.h” no codigo com a diretiva “#include <malloc.h>".

2. Para podermos analisar o uso da memoria pelo programa em diferentes estagios de ligagdo,
vamos ativar o ligador para que ele exiba estatisticas sobre o uso de memoria. Com o projeto
selecionado no “Project Explorer”, use o menu principal “Project > Properties”. Na janela
que se abre, no painel a esquerda, expanda a opcdo “C/C++ Build” e selecione a opcao
“Settings”.

[Properties for Memoria O x>

type filter text Settings L=l - 8

Builders
w CfC++ Build

Build Variables
Environment

Configuration: Debug [Active] ~ | Manage Configurations..

Lzgging %5 Tool Settings | # Build Steps Build Artifact Binary Parsers | €3 Error Parsers
C/C++ General o MCU/MPU Toolchain Other flags £ 58 8
9= # MCU/MPU Settings Wi o =
Project References (8 MCU/MPU Post build outputs | | ekl usniu s sl s
Run/Debug Settings w B3 MCU/MPU GCC Assemnbler
(£ General

(£ Debugging
(& Preprocessor

3. Mantendo ativa a aba “Tool Settings”, no conjunto de opg¢des encontre o conjunto “MCU
GCC Linker” e clique em “Miscellaneous” (expanda o conjunto se necessario).

£ Tool Settings Build Steps Build

& MCU/MPU Toolchain
(% MCU/MPU Settings
@ MCU/MPU Post build cutputs
w B MCU/MPU GCC Assembler
(# General
(# Debugging
(# Preprocessor
@ Include paths
(# Miscellaneous
~ 5 MCU/MPU GCC Compiler
@ General
@ Defugging
(# Prefirocessor
(% Include paths
(# Optimization
@ Warnings
(# Miscellaneous
~ 53 MCU/MPU GCC Linker
@ General
Libraries
|52 Miscellaneous |

4. No campo “Other flags” clique no botdo com o simbolo de “+” em verde.

Other flags

5. Na janela que se abre, digite “-WI,--print-memory-usage” e clique no botdo “OK”. O
“-W1”, informa ao GCC que as opg¢des a seguir sdo para o ligador e ndo para o proprio
compilador. O “--print-memory-usage” ¢ a op¢ao especifica para o linker que faz com que ele
exiba estatisticas sobre o uso de memdria.

L L —

E Enter Value

Other flags

W, --print-memary-usage

E Properties for Memaria

type filter text

» Resource
Builders
s~ C/C++ Build
Build Variables
Environment
Lzgging
» C/C++ General
CMSIS-5YD Settings

O X
Settings oo - 38
Configuration: Debug [Active] ~ | Manage Configurations..
55 Tool Settings | 4 Build Steps Build Artifact Binary Parsers| €3 Error Parsers
& MCU/MPU Toclchain Other flags £ s 8

E MCU/MPU Settings

--print-memory-usage

@ MCU/MPU Post build cutputs
~ By MCU/MPU GCC Assembler
@ General
@ Debugging
@ Preprocessor

Project References
Run/Debug Settings

6. Adicionamos o comando “arm-none-cabi-size "${BuildArtifactFileName} ” para exibir,
na etapa de poés-construcdo, o tamanho das seg¢des do arquivo bindrio
"${BuildArtifactFileName}” gerado pela compilagdo e ligagdo. Clique na aba “Build Steps”.
Na secdo “Post-build steps” adicionar o
"${BuildArtifactFileName}”

comando: arm-none-eabi-size

%3 Tool Setthags | # Build Steps uild Artifact Binary Parsers| €3 Error Parsers

Pre-build steps

Command:
Description:
ost-build steps
Command:
arm-none-eabi-size "S{BulldArtifactFileMame}” o |

Vale destacar que este comando ¢ incluido no comando anterior. Optamos por esta
redundancia para mostrar o comando que exibe o tamanho dos segmentos de dados e
instrucdes em byftes.

7. Finalmente, clique no botdo “Apply and Close”. Com estas configuragdes no projeto, ao se
realizar um “Build”, ao final do processo serdo mostradas as seguintes informacdes, incluindo
a ocupacao das unidades de memoria fisicas e o tamanho dos segmentos de instrugdes (text),
de dados inicializados (data) e dados ndo inicializados (bss). Esses tamanhos serdo
apresentados tanto em decimal (dec) quanto em hexadecimal (hex), medidos em bytes.

Memory region Used Size Reéion_size %age Used

ITCMRAM: 0 GB 64 KB 0.00%
FLASH: 2456 B 2 MB 0.12%
DTCMRAM1 : 0 GB 64 KB 0.00%
DTCMRAMZ : @ GB 64 KB 0.00%
RAM: 2064 B 1 MB 0.20%
RAM_CD: 0 GB 128 KB 0.00%
RAM_SRD: @ GB 32 KB 0.00%

Finished building target: Mwmoria.elf

arm-none-eabi-size Mwmoria.elf
arm-none-eabi-objdump -h -S Mwmoria.elf > "Mwmoria.list"
text data bss dec hex filename
2352 184 1960 4416 1140 Mwmoria.elf
Finished building: default.size.stdout

Finished building: Mwmoria.list

Ha duas tecnologias de RAM, SRAM (RAM estatica) e DRAM (RAM dinamica). A qual tipo
de RAM se refere na lista de informacgdes?

8. Anote os valores apresentados, em termos de byfes e percentagem, do uso das unidades de
memoria fisicas. Identifique os tipos de memoria usados para o segmento de instrucdes e de
dados inicializados e ndo-inicializados.

J4

(¢}

9. Clique no “Debug” para carregar o programa no microcontrolador. A perspectiva
chaveada para “Debug” e o fluxo de execu¢do deve estar pausado (pequena seta azul
esquerda da linha) na linha “heap var = (char *)malloc(sizeof(char));”

Qo

J/Aloca 108 bytes para o vetor heap var com 108 elementos do tipo
J/char. Observe a conversao explicita de tipo de retorno "void"
//da funcao malloc para "char *"

heap var = (char *)malloc(sizeof(char) * 100);

10. Na perspectiva de “Debug”, abra a aba “Expressions” e adicione as expressdes conforme
a imagem abaixo. Com base nos enderegos alocados para essas variaveis, identifique em qual
unidade de memoria fisica elas estdo armazenadas e determine se elas estdo localizadas em
enderecos mais baixos ou mais altos dentro dessa unidade de memoria.

)=Variables s Breakpoints i Registers 9 Expressions X ®# SFRs [Memory = 8
5B XK|CIeA S

Expression Type Value Address

* heap_var char * 0x0 0x24000088

9= global_var1 uint8_t Ox2a 0x24000000

)= uninitialized_var1 uint32_t 0x0 0x24000084

* usig uint8_t * 0x0 0x2400008c

» sig int16_t* 0x0 0x24000090

% RCC_AHB4ENR volatile uint32_t * 0x58024540 0x24000004

% GPIOB_MODER volatile uint32_t * 0x58020400 0x24000008

% GPIOB_OTYPER volatile uint32_t * 0x58020404 0x2400000c

% GPIOB_ODR volatile uint32_t * 0x58020414 0x24000010

reg_static_var1 Error: Multiple er...
2= Add new expression

Note que todos os ponteiros sdo indicados por uma seta azul-escuro. A coluna “Value” mostra
o valor do ponteiro em si e ndo o valor para o qual ele aponta. A esquerda da seta pode-se
expandir a varidvel para mostrar o valor para o qual ela aponta clicando em “>". Note que os
valores dos ponteiros ndo inicializados ¢ zero.

11. Use o botdo “Step Over” ou a tecla F6 para avancar uma linha de cédigo. Execute as duas
proximas linhas e veja o que acontece com os valores das expressoes. Olhe também a aba
“Variables”, que mostra “mi”. Esta varidavel contém as informacdes sobre a alocag¢do de
“heap var”, especialmente o elemento “vordblks”, que indica o niimero de bytes alocados
dinamicamente pelo usuario. Quais outras varidveis sdo mostradas nesta aba? Qual ¢ a funcao
em execucao? Podemos dizer que a aba “Variables” apenas mostra variaveis locais da funcao
em execucao? Veja os enderecos das varidveis que estdo nesta aba. identifique em qual
unidade de memoria fisica elas estdo armazenadas e determine se elas estdo localizadas em
enderecos mais baixos ou mais altos dentro dessa unidade de memoria.

12. Execute as duas linhas seguintes, que modificam valores em varidveis. Veja o que
acontece com os seus valores na aba “Expressions”.

13. Ao chegar na linha “global varl =reg demo(10);”, ao invés de usar “Step over” (Tecla
F6), use o botdo “Step Into” (Tecla F5) para entrar na fungdo. Veja o que acontenceu com a
ultima linha da aba “Expressions”. Por que foi preenchida esta linha depois da chamada da
fun¢ao?

)= \ariables ®s Breakpoints i Registers 7 Expressions x ®3SFRs [0 Memory

Expression Type Value Address
® heap_var char * 0x%24000210 0x24000088
¢9= global_varl uint8_t 0x2b 0x24000000
= uninitialized_var1 uint32_t 0x5 0x24000084
» Usig uint8_t * 0x0 0x2400008c
* sig int16_t * 0x0 0x24000090
% RCC_AHB4ENR volatile uint32_t * 0x58024540 0x24000004
#» GPIOB_MODER volatile uint32_t * 0x58020400 0x24000008
» GPIOB_OTYPER volatile uint32_t * 0x58020404 0x2400000c
» GPIOB_ODR volatile uint32_t * 0x58020414 0x24000010
9= reg_static_varl uint8_t Oxb 0x24000014

28 Add new expression

14. Va para a aba “Variables” e veja as variaveis mostradas. Em qual func¢do sao utilizadas
estas variaveis? Observe também que o campo “Location” da varidvel “reg var” estd vazio.
Mude para a aba “Registers” e veja os registradores de uso geral. Um deles deve ter o valor
“10” (ou “0Oxa”) passado para a fun¢do. Volte para a aba “Variables”. Execute, passo a passo,
as instrucdes e veja o que acontece depois da execucdo da linha “reg var=v + 1;” Volte para a
aba “Registers” e veja se hd algum registrador de uso geral com o mesmo valor no campo
“Value” da varidvel “reg var”. Qual foi o efeito do qualificador “register” na declaragdo da

variavel “reg var” dentro da funcdo “reg demo()”? Vocé€ poderia classificar esta varidvel
como local ou global?

)= Variables x % Breakpoints i Registers ¢ Expressions ®8SFRs [0 Memory

5B
MName Type Value Location
6= v uint32_t 10 0x240fff7c
9= reg_local uintl6_t 2048 Ox240fff86
69= reg_var uint32_t 603980296
9= reg_static_var1l uint8_t 10 4n' 0x24000014

15. Va para a aba “Memory” e analise a ordenagdo de bits das variaveis. Sdo ordenados em
little-endian ou em big-endian? Verifique ainda se as variaveis estdo alocadas em espagos
contiguos de memoria, ou seja, se elas ficam adjacentes uma a outra. Caso contrario,
identifique quais varidveis tém "buracos" entre elas e explique por que o compilador e o
ligador podem ndo otimizar a alocagdo de memoria para manter as variaveis consecutivas.

)= Variables ®e Breakpoints % Registers %7 Expressions 2 SFRs = Variables ®e Breakpoints Hii Registers % Expressions & SFRs
Monitors = % % [0x24000000 : 0x24000000 <Hex> x |4 | Monitors %= % % | 0x24000000 : 0x24000000 <Hex> * |
% 0x24000000 Address 0 1 2 3 @ (0x24000000 Address 0 1 2 3
24000000 JEER o0 00 00 2400004C 00 00 00 00
24000004 40 45 02 58 24000050 00 00 00 00
24000008 00 04 02 58 24000054 00 0o oo 00
2400000C 04 04 02 58 24000058 00 0o oo 00
24000010 14 04 02 58 2400005C 00 0o oo 00
24000014 O0A OO0 00 0O 24000060 00 oo o0 00
24000018 1C oo 00 24 24000064 00 oo o0 00
2400001C 00 oo 00 00 24000068 00 0o oo 00
24000020 A0 00 00 24 2400006C 00 0o oo 00
24000024 08 01 oo 24 24000070 00 oo o0 00
24000028 70 01 oo 24 24000074 00 oo o0 00
2400002C 00 oo 00 00 24000078 00 0o oo 00
24000030 00 oo 00 00 2400007C 00 0o oo 00
24000034 00 oo 00 00 24000080 00 00 00 0o
24000038 00 oo 00 00 24000084 05 0o 00 00
2400003C 00 oo 00 00 24000088 10 02 00 24
24000040 00 oo 00 00 2400008C 00 00 00 00
24000044 00 g0 00 00 24000090 00 00 00 00
24000048 00 oo 00 00

16. Ao sair da fungdo, execute a instrugao seguinte. Veja o valor do ponteiro “heap var” e, na
aba “Memory”, crie um monitor para o endereco definido no ponteiro. Clique com o botao
DIREITO em qualquer célula e selecione “Format”. Na janela que se abre, mude o valor de
“Column Size” para 1. Além disso, adicione uma nova renderizacao clicando em “+” e
selecione “ASCII” como novo formato de renderizagdo. Compare os valores hexadecimais
dos bytes com os cddigos ASCII. Note que a linguagem C usa um valor para indicar que a
string terminou. Qual ¢ este valor?

&

)= Variables ®e Breakpoints i Registers %< Expressions @@ 5FRs [0 Memory x e =8 B %~ § =

Monitors == 3% % |0x24000210 <Hex> 0x24000210 : 0x24000210 <ASCll> x |5 New Renderings...
@ 0x24000000 Address O 1 2 3 4 5 6 7 8 9 A B C D E F
@ 0x24000210 24000210 T h i s i s a N U L L - ot
24000220 e r m i n a t e d S t r i n g
24000230 O h | O ¢ © O h U g O O 0 & O
24000240 g 0 0O |, ¢ ' A O O k ® O ~ ° &
24000250 0 o O 6 O ~ °* @& O o O O B o

16. Execute as duas instrugdes a seguir e observe o efeito sobre a variavel “mi”. Vocé
consegue explicar o que a funcao “realloc” faz?

17. Execute as instrugdes até a linha “for(;;);”. Em seguida, va para a aba "Monitor" e
examine o conteudo da memoria a partir do endereco “0x58024400”. Compare os valores
exibidos nas células de memoria com os valores dos registradores do periférico RCC na aba
"SFRs". Por que ha tanta semelhanca entre esses dois conjuntos de valores? O tipo de dado
“struct” em C permite mapear um bloco de memoria, como o intervalo de “0x58024400” a
“0x5802457F”, associando grupos de células de memoria com nomes de registradores
mapeados. Isso facilita a organizacao e a leitura dos dados na memoria, rotulando os grupos
de cé¢lulas conforme os registradores correspondentes.

)=Variables % Breakpoints ! Registers %7 Expressions ®8SFRs [0 Memory x
wiye [|58 BB

Monitors <= 3 % |0x58024400 : 0x58024400 <Hex> x | 4= New Renderings..

@ 0x24000000 | Address 0-3 4-7 8-B C-F

@ 0x24000210 | 58054400 21070040 32010000 88000020

@ 0x358024400 | 5e0p4410 00000000 0O00OOOO 00000000 0OOOO00O
58024420 00000000 00000000 00020202 OOOOFFOT
58024430 80020101 00000000 80020101 00000000
58024440 80020101 00000000 00000000 00000000
58024450 00000000 00000CCO 00000000 00000000
58024460 00000000 00000000 00000000 00000000
58024470 00000000 00000CCO 00000000 00000000
58024430 00000000 00000CCO 00000000 00000000
58024490 00000000 00000000 00000000 00000000
580244A0 00000000 00000CCO 00000000 00000000
58024430 00000000 00000CCO 00000000 00000000
580244C0 00000000 00000CCO 00000000 00000000
580244D0 0000ESO0 00000000 00000000 00000000
58024450 00000000 00000CCO 00000000 00000000
580244F0 00000000 00000100 00000000 3151EQFD
58024500 23020006 710A0060 FFO72030 48000000
58024510 FFC3FFE 36010000 F330D740 AAE6010C
58024520 00000000 00000CCO 00000000 00000000
58024530 00O0ES00 00000000 00000000 00000000
58024540 00000000 00000CCO 00000000 00000000
58024550 00000000 00000100 00000000 3151EQFD
58024560 23020006 710A0060 FFO72020 48000000
58024570 FFC3FFES 36010000 F330D740 AAE6010C
58024580 00000000 000000CO 00000000 00000000

18. Onde esta localizada a constante “const _varl”? Por qué?

19. Termine a execug¢do do programa (CTRL+F2). Volte para o editor da perspectiva
“C/C++". Apague as barras de comentario (“//”’) da linha “const_varl++;” e tente realizar um
“Build”. O que acontece? Dica: Sempre leia atentamente as mensagens de erros e avisos.

20. Com base na sua analise, organize os segmentos Code, Data, BSS, Stack e Heap de
acordo com seus enderecos de memoria. Verifique se o layout desses segmentos segue a
ordenacao tipica, do endereco mais baixo para o mais alto: Code, Data, BSS, Heap e Stack.
Com base na sua analise, organize os segmentos Code, Data, BSS, Stack e Heap conforme os
enderecos da memoria. Certifique se o layout desses segmentos seguem a ordenagdo, de
endere¢o mais baixo para o mais alto, Code, Data, BSS, Heap e Stack.

TECNOLOGIAS DE MEMORIA: PROM, EPROM, EEPROM,
FLASH NAND, NOR, SRAM e DRAM

Entre as principais tecnologias de memodria estio PROM, EPROM, EEPROM, SRAM,
DRAM, FLASH NAND e FLASH NOR, cada uma com suas particularidades e aplicagdes
especificas.

OTP (do inglés One-Time Programmable) refere-se a um tipo de memoria que pode ser
programada apenas uma vez. ApoOs a gravagdo inicial, os dados armazenados na memoria
OTP ndo podem ser alterados. Nos microcontroladores, a memoria OTP ¢ aplicada no
armazenamento de informacdes permanentes, identificadores tnicos, codigos de configuracao
e dados de calibragdo. Além disso, ¢ utilizada para armazenar dados de seguranca, como
chaves criptograficas. Existem varias tecnologias utilizadas para implementar a memoria
OTP em microcontroladores. Uma das tecnologias mais comuns ¢ a PROM (do inglés
Programmable Read-Only Memory). A PROM ¢ uma memoria nao-volatil, programada
uma Unica vez através de um processo que envolve a aplicagdo de uma alta tensdo para fundir
fusiveis internos, alterando permanentemente a configuracao da memoria.

Vcc

Vcc

Aﬂrw Address Line

Data
| Line

= i Floating
PROM Memory Cell Gate
EPROM Memory Cell

Outra tecnologia relacionada ¢ a EPROM (do inglés Erasable Programmable Read-Only
Memory), que pode ser apagada com luz ultravioleta e reprogramada. Embora a EPROM seja
reprogramavel, em alguns casos ela ¢ utilizada como uma memoria OTP quando a capacidade

https://www.electricaltechnology.org/2020/05/types-computer-memory.html
https://www.electricaltechnology.org/2020/05/types-computer-memory.html

de apagamento ndo ¢ necessaria. A memoria EPROM utiliza células baseadas em transistores
de porta flutuante. Durante a programac¢ao, uma alta tensdo ¢ aplicada, resultando em uma
descarga de avalanche de elétrons que se acumula no eletrodo da porta. Essa carga ¢ isolada
pela porta flutuante, impedindo seu vazamento e garantindo que os dados sejam armazenados
de forma permanente. Para apagar os dados, ¢ necessario expor a EPROM a luz ultravioleta,
que dissipa a carga acumulada. Apesar de sua capacidade de ser reprogramada, a EPROM ¢
considerada uma memdria nao-volatil porque mantém seu contetido mesmo quando o chip ¢
desenergizado.

Desenvolvida para substituir o processo de apagamento por luz ultravioleta da EPROM, os
bytes individuais da EEPROM (do inglés Electrically Erasable Programmable Read-Only
Memory) podem ser apagados e reprogramados diretamente dentro do circuito usando um
circuito de programacao especial. Embora a EEPROM permita a reprogramagao byte a byte,
0 que pode resultar em uma operacao relativamente mais lenta, a memoria FLASH, que ¢ um
tipo de EEPROM, foi projetada para oferecer alta velocidade. A memoria FLASH possui um
numero limitado de ciclos de reprogramagao, cerca de 10 mil, enquanto os modelos mais
recentes de EEPROM podem suportar até 1 milhdo de ciclos. Apesar de a EEPROM ser mais
cara, a memoria FLASH enfrenta a desvantagem de exigir a exclusao de grandes blocos de
memoria, em vez de bytes individuais

A memoria FLASH ¢ baseada em transistores de efeito de campo (FET) com uma camada
adicional de porta flutuante. O nome FLASH deriva da ideia de flash em inglés, que
transmite a ideia de algo que ocorre rapidamente, refletindo a capacidade da memoria de
apagar ¢ gravar dados rapidamente. Em dispositivos semicondutores, o tunelamento ¢ um
fendmeno quantico que permite que elétrons atravessem barreiras de potencial que, segundo a
fisica classica, seriam intransponiveis. No caso da memoéria FLASH, o fendmeno especifico
conhecido como tunelamento Fowler-Nordheim permite que uma carga elétrica seja
transferida para a porta flutuante do transistor, representando dados na memoria. Quando um
transistor ¢ “programado” ou ‘“‘escrito”, uma carga € colocada na porta flutuante através do
tunelamento Fowler-Nordheim. A presenga ou auséncia dessa carga define o valor dos bits,
com a carga representando um bit “0” e a auséncia de carga representando um bit “1”. No
estado ndo programado, as células de memodria FLASH geralmente correspondem ao valor
logico “1” (ou nivel alto).

FLASH NAND ¢ um tipo de memoéria nao-volatil que armazena dados em células dispostas
em série dentro de cada linha de bit. Essa configuragdo faz com que a légica da leitura dessas
células se assemelha a logica de uma porta NAND. Assim como uma porta NAND retorna
uma saida baixa apenas se todas as entradas sdo altas, a leitura de uma linha de células em
série depende do estado de todas as células na linha. Se qualquer célula na série estiver em
um estado que impede a passagem de corrente, a leitura geral da linha ¢ afetada. As células
conectadas em série sdo, por sua vez, agrupadas em paginas, e essas paginas sdo organizadas
em blocos. Devido a estrutura em série, o apagamento deve ser realizado em blocos inteiros,
o que ¢ eficiente para limpar grandes areas de memoria, mas impede o apagamento € a
gravagao de células individuais. A gravacao, por outro lado, ¢ realizada por paginas, o que
permite a escrita de dados em uma pagina especifica dentro de um bloco.

Essa arquitetura ¢ amplamente utilizada em dispositivos de armazenamento devido a sua alta
densidade e custo relativamente baixo. A memoéria FLASH NAND ¢ ideal para aplicagdes
que requerem grandes capacidades de armazenamento, como cartdes de memoria e unidades
SSD (do inglés Solid State Drives). No entanto, a principal desvantagem ¢ que a escrita € o
apagamento devem ser feitos em blocos inteiros, o que pode reduzir a eficiéncia em

https://pt.wikipedia.org/wiki/Mem%C3%B3ria_flash

operagdes de leitura e escrita aleatoria. Por essas razdes, a FLASH NAND ¢ menos comum
em microcontroladores, que frequentemente demandam acesso rapido e flexivel a pequenas
por¢des de dados. A complexidade de controle e as limitagdes associadas a escrita e
apagamento em grandes blocos ndo se adequam bem as necessidades tipicas de desempenho
e flexibilidade para operagdes de codigo e dados em microcontroladores.

Bit line

Ground Bit line
select Word Word Word Word Word Word Word Word select
transistor line 0 line 1 line 2 line3 line 4 line5 line 6 line 7 transistor

1 L L L L L L L

FLASH NOR ¢ outra forma de memodria nao-volatil que armazena dados em células
conectadas diretamente a uma linha de bif e a uma linha de palavra. Esta configuracdo em
paralelo faz com que a leitura da memoria FLASH NOR se assemelhar a l6gica de uma porta
NOR, no sentido de que a deteccdo do estado da célula reflete um tipo de “comparacao”
semelhante a verificagdo de todas as entradas em uma porta NOR. Se a célula esta
programada (“0”) ou apagada (“1”), isso afeta a corrente medida e, por conseguinte, o
resultado da leitura, refletindo uma logica baseada no estado da célula. Ao contrario da
FLASH NAND, que organiza as células em série e requer o acesso a blocos ou paginas
inteiras, a FLASH NOR permite a leitura e gravacao de dados em células individuais ou em
unidades menores. Isso significa que um processador pode acessar diretamente qualquer
endereco da memoria sem precisar ler blocos inteiros.

Essa caracteristica faz da FLASH NOR uma escolha ideal para armazenar firmware e c6digo
de inicializagdo que precisa ser acessado rapidamente. Sua arquitetura proporciona acesso
aleatdrio direto, facilitando operacdes de leitura. No entanto, ¢ geralmente mais lenta para
operagodes de escrita e tem uma capacidade de armazenamento menor em comparagao com a
FLASH NAND. Por essas razdes, a FLASH NOR ¢ frequentemente preferida em aplicagdes
que exigem execucdo direta de codigo da memoria, como em sistemas embarcados e
firmware de dispositivos.

https://en.m.wikipedia.org/wiki/Flash_memory

Bit line

Word Word Word Word Word Word
line 0 line 1 line 2 line 3 line 4 line 5
L L L . . L
| | [1 [] | | [] [] | | L | [1 ‘ l
| I— | E—| | | | E—| | I— | |
N N, GND N N, GND N N, GND N

SRAM (do inglés Static Random-Access Memory) € uma tecnologia de memdria volatil que
se destaca pela sua alta velocidade e simplicidade de operagdo. Ao contrario da DRAM (do
inglés Dynamic RAM), que precisa ser periodicamente atualizada, a SRAM retém seus dados
enquanto a energia estiver sendo fornecida. Isso se deve ao seu componente interno, que
utiliza flip-flops para armazenar cada bit de informacdo. Essa estrutura permite acesso quase
instantaneo aos dados, o que a torna ideal para aplicacdes que requerem altas taxas de
transferéncia e baixa laténcia. No entanto, a SRAM ¢ mais cara e consome mais energia por
bit armazenado comparada a DRAM e a memoria FLASH, o que limita seu uso a tamanhos
relativamente menores.

Static RAM (SRAM)

¢ _|m| [m| (m| [m] [m] [m]
‘m| (| [m] [m] (m] (m
‘ !‘ ‘ 1 1 1&59\@4@\
Address 1 1 ‘ 1 ‘ 1 V:O"-d“ne:
ﬁ;_. _-_ _-_ _-_ _-_ _-_ _-_ (horizontal)
() |8 (e (B [ER[E e
B (8 8 B B B ovepercen
e (][]] (] [e
8x6 SRAM Sense
o VY Y YYY =

“
Data out

DRAM (do inglés Dynamic Random Access Memory) ¢ uma forma de memoria volatil
amplamente utilizada para armazenar dados tempordrios em computadores e outros
dispositivos eletronicos. A tecnologia da DRAM baseia-se em células de memoria compostas
por capacitores e transistores. Cada célula de DRAM armazena um bif de dado através de um
capacitor que retém uma carga elétrica, representando um valor binario de 0 ou 1, enquanto
um transistor controla o acesso a carga para ler ou escrever dados na célula. Quando a
DRAM precisa ler um dado, o transistor ¢ ativado para permitir a deteccdo da carga no
capacitor, que ¢ entdo amplificada e interpretada. Para escrever dados, a carga do capacitor ¢
ajustada através do transistor para refletir o novo valor. Um aspecto importante da DRAM ¢

https://computationstructures.org/lectures/caches/caches.html
https://en.wikipedia.org/wiki/Dynamic_random-access_memory

que a carga no capacitor pode vazar ao longo do tempo, o que exige que o conteudo da célula
seja periodicamente refrescado para manter a integridade dos dados.

Apesar de suas vantagens em termos de densidade de armazenamento, a DRAM ndo ¢
comumente utilizada em microcontroladores. Isso se deve principalmente a necessidade
constante de refresco (em inglés refreshing) dos dados, o que adiciona complexidade ao
sistema e aumenta o consumo de energia, tornando-a menos eficiente para aplicacdes onde a
simplicidade e a eficiéncia energética sdo prioritarias. Além disso, a DRAM ¢ mais cara e
complexa de implementar em comparacdo com outras tecnologias, como SRAM, que ¢
preferida em microcontroladores devido a sua simplicidade, menor custo e desempenho mais
rapido.

MAPA DE MEMORIA

A organizagdo geral da memoria de um sistema computacional pode ser vista no mapa de
memoria. Este mapa divide a memoria em blocos, usando como critérios o tipo de memdoria
e a utilizacdo da mesma. A maioria dos microcontroladores ARM, por usarem registradores
de 32 bits, podem acessar um espaco de memoria total de 4GB. Note que, apesar de a CPU
poder acessar todo este espago, muitas vezes apenas parte dele estd ocupado com elementos
fisicos de memoria. A conversdo de um endereco no espago de enderecamento do
processador para um enderego especifico em uma unidade de memoria fisica € realizada pelo
decodificador de enderecos. Normalmente, o endereco ¢ dividido em dois campos: [CS |

Offset]. O campo de bits mais significativos ¢ usado para gerar o sinal de Selecao de Chip
(CS), que identifica qual unidade de memoria fisica deve ser ativada. Ja o campo de bits
menos significativos ¢ utilizado para enderecar os bytes dentro da unidade de memoria
selecionada. Nesse contexto, o valor Offset = 0 corresponde ao endereco-base, ou seja, o
endereco inicial do bloco contiguo em que a unidade de memdria fisica esta mapeada.

https://www.eeeguide.com/address-decoding-techniques-in-8086-microprocessor/

s ARG :

n:g L %U' g) U Dy Dy JVL Oy 0y JJ D

= L-f"\ﬁ Y A frte By
WR —H > = JETN P —nJ Az P
- rd IM red I 1 Va0

Ry 2764 | 2764 prockis 8254 B, 6204

FRO g m eprom |LAD J — eprom | HRD L. pan Pdas RAM

Mo el | T 4% e % g i R 1 9 ew
HWR 3 LWR sm—
WR AR

©s I}) G8
5 W L L")

¥y
v o
Arr A CE EPROMCS
o ECF
Ap B

Ay

7
F .
i
G, 3 N
.8
_E"? 38—
—
i
15] S aup ot
A T

Fig. 10,14 Block decoding

Segue-se um exemplo de circuito de decodificacdo dos enderecos do processador de 24 bits
em sinais de Selecdo de Chip de ROM1, ROM2, RAM, PERII e PERI2, sendo PER1 ¢ PER2
dois periféricos mapeados no espago de enderegamento do processador.

A — >0
- Ry —

Az Ay —————— CS_ROM1*
Az [>o- Az ———)o—b
Az [>o
Az [S>o————
R D
A 15
o ;CC A Do—»cs_RAM*
Ass [>o Aqz

74LS133 Aq2

CS_ROM2*

Aqq
Az
Aq2
A
A1
Aos
Aos
Aoy

CS_PERIT*

A—.IS'_D—’
Ass Ata—

»@——» CS_PERI2*
Agz —

Aos

Aos —

Aoz

7415133

\(T\{Y\(YY\NYY\{

O Manual de Referéncia apresenta a organizacdo de memoria do microcontrolador
STM32HA3ZIT-Q, comec¢ando com a informacdo de que memorias de programa, dados,
registradores e portas de entrada/saida compartilham o mesmo espaco linear de 4 GB. A
Tabela 6 da secdo 2.3.2 apresenta o mapa de memoria, incluindo blocos reservados para
memorias externas e internas. Observe que os enderecos de valores mais baixos estdo no final

https://www.dca.fee.unicamp.br/cursos/EA701/STM32/rm0455-stm32h7a37b3-and-stm32h7b0-value-line-advanced-armbased-32bit-mcus-stmicroelectronics.pdf#page=129
https://www.dca.fee.unicamp.br/cursos/EA701/STM32/rm0455-stm32h7a37b3-and-stm32h7b0-value-line-advanced-armbased-32bit-mcus-stmicroelectronics.pdf#page=130

da tabela, enquanto os limites de cada bloco de memoria sdo enderegos alinhados em
multiplos de 4 bytes. Internamente, os seguintes blocos estdo ocupados por elementos fisicos

de memoria;:

Periféricos (0x4000 0000 a 0xSFFF FFFF): Espaco reservado para o acesso aos
registradores mapeados em memoéria dos periféricos. E importante notar que esses
elementos de memoria ndo sao do tipo SRAM ou FLASH; em vez disso, o acesso a
esses enderecos ¢ direcionado aos registradores dos diferentes periféricos do
microcontrolador.

Peripherals (refer to Table 7. Register boundary

addresses) Device) Yes

0x4000 0000 - 0x5FFF FFFF

Peripherals

RAM (0x2000 0000 a 0x3FFF FFFF): Espaco da SRAM, dividido em varios blocos,
sendo alguns reservados (sem elementos fisicos) e outros com blocos de SRAM
ligados a véarios barramentos internos, Backup, SDR (do inglés Single Data Rate),
AHB (do inglés Advanced High-Performance) e AXI (do inglés Advanced eXtensible
Interface). Esses barramentos internos servem para interconectar a SRAM com
diferentes partes do sistema, cada um com suas caracteristicas e finalidades
especificas.

Code (0x0000 0000 a Ox1FFF FFFF): Area que inclui as memorias ndo-volateis,
como memoria de sistema (registradores que guardam configuragdes gerais do
microcontrolador), FLASH de codigo, ¢ uma area OTP (do inglés One-Time
Programming, que ndo pode ser regravada, usada para guardar dados permanentes).

Table 6. Memory map and default device memory area attributes (continued)

Region Boundary address Arm® Cortex®-M7 Type | Attributes E:::::e

0x3880 1000 - 0x3FFF FFFF Reserved
0x3880 0000 - 0x3880 OFFF Backup SRAM
0x3801 0000 - Ox387F FFFF Reserved
0x3800 0000 - 0x3800 7FFF SDR SRAM
0x3002 0000 - 0x37FF 7FFF Reserved
0x3001 0000 - 0x3001 FFFF AHB SRAMZ2
0x3000 0000 - 0x3000 FFFF AHB SRAM1 Write-back,

E 0x2600 0000 - 0x2FFF FFFF Reserved Normal W'it:’;fga‘e No
0x2500 0000 - 0x25FF FFFF GFXMMU attribute
0x2410 0000 - Ox24FF FFFF Reserved
0x240A 0000 - 0x240F FFFF AXI SRAM3
0x2404 0000 - 0x2409 FFFF AXI SRAM2
0x2400 0000 - 0x2403 FFFF AXI SRAM1
0x2002 0000 - 0x23FF FFFF Reserved
0x2000 0000 - 0x2001 FFFF DTCM
0x1FF2 0000 - Ox1FFF FFFF Reserved Write-through
0x1FFO0 0000 - 0x1FF1 FFFF System Memory MNormal cache No
0x08FF F400 - Ox1FEF FFFF Reserved attribute
0x08FF FOOO - Ox08FF F3FF OTP area Normal No

g 0x0820 0000 - 0x08FF EFFF Reserved
0x0810 0000 - 0x081F FFFF Flash memory bank 2 Write-through
0x0800 0000 - 0x080F FFFF Flash memory bank 1 MNormal cache No
0x0001 0000 - 0x07FF FFFF Reserved attribute
0x0000 0000 - 0x0000 FFFF ITCM RAM

Note que a SRAM e os periféricos podem ser lidos e escritos diretamente pela CPU usando
instru¢des padrdo, porém a regido de Code, onde as instru¢des sdo armazenadas, permite
apenas leitura direta pela CPU, mas as escritas devem ser feitas através de um periférico
interno especifico para grava¢ao da FLASH.

ALINHAMENTO DE DADOS

A menor unidade de acesso a todas as memorias € o byte. O alinhamento de dados se refere
a organizagdo dos dados na memoria de forma que os enderecos estejam alinhados conforme
a arquitetura do processador. Processadores modernos frequentemente exigem que os dados
sejam armazenados em endere¢os que sdo multiplos de dois. Além disso, o barramento de
memoria, que conecta o processador & memoria principal, € projetado para transferir dados
em blocos do mesmo tamanho que a palavra de memoria do processador. Quando os dados
estdo alinhados com o limite de palavra (em inglés word), o processador pode acessar uma
palavra inteira em uma Unica operagao, utilizando toda a largura do barramento. Isso permite
operacgodes de leitura ou escrita em uma Unica transagao, ao contrario dos dados desalinhados,

que exigem multiplas transa¢des. Assim, o alinhamento adequado maximiza a eficiéncia do
acesso a memoria e melhora o desempenho geral do sistema.

Quando os dados ndo estdo alinhados corretamente, o sistema precisa adicionar padding
(espago nao utilizado) para garantir o alinhamento adequado. Os paddings sao bytes extras
inseridos entre os dados para ajustar o alinhamento. Isso pode causar um aumento
significativo no tamanho das estruturas de dados. Por exemplo, se uma estrutura contém um
“char” seguido de um “int”, o compilador pode adicionar bytes de padding entre eles para
garantir que o int esteja alinhado em um multiplo de 4 bytes. No entanto, o uso de padding
pode resultar em desperdicio de memdria, especialmente em estruturas grandes ou em
sistemas com recursos limitados.

Para otimizar o alinhamento e evitar padding desnecessario, ¢ fundamental organizar os
dados e estruturas de forma a minimizar o desperdicio de memoria. Isso pode ser feito
posicionando os membros maiores das estruturas antes dos menores, alinhando dados de
acordo com o tamanho da palavra do processador e utilizando diretivas de alinhamento
fornecidas pelo compilador. Além disso, a andlise e o ajuste do /ayout das estruturas para
garantir que os dados estejam alinhados com os multiplos adequados pode reduzir a
quantidade de padding necessario. Técnicas como a reorganizacdo de membros em estruturas
e o uso das ferramentas de compilacao ajudam a melhorar o uso da memoria e a eficiéncia do
sistema.

Por exemplo, considere uma tabela contendo quatro colunas do tipo “smallint” e uma coluna
do tipo “bigint”, se uma coluna “smallint” (2 bytes) for seguida por uma coluna “bigint” (8
bytes), o sistema adiciona 6 bytes de preenchimento apds a coluna “smallint” para garantir
que a coluna “bigint” esteja alinhada a um limite de 8 byfes. No entanto, ao reorganizar as
colunas “smallint” para que todas elas precedam a coluna “bigint”, ¢ possivel otimizar o
layout da tabela e reduzir a necessidade de preenchimento. Por exemplo, ao posicionar todas
as quatro colunas “smallint” antes da coluna “bigint”, pode-se minimizar o espago de
preenchimento necessario e usar a memoria de forma mais eficiente.

column_3 column_4 column_5
column_2 smallint smallint smallint
padding (6 bytes) bigint (8 b;nes) (2 bytes) (2 bytes) (2 bytes)

I I I I I I
X I I l l l I I |

0 2 3 4 6 8 9 13 20 22 23

padding
column_1 (2 bytes)

smallint (2 bytes)

Data Layout 1 5 7 10 1 12 14 15 16 17 18 19 21

column_1 column_2 column_3 column_4 column_5
smallint smallint smallint smallint bigint
(2 bytes) (2 bytes) (2 bytes) (2 bytes) (8 bytes)
Data Layout 0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15

ORDENACAO DOS BYTES

https://atlasgo.io/guides/postgres/pg-110

Como uma palavra de memoria do processador pode conter mais de um byte, existem duas
estratégias principais para a organizacao desses byfes nos enderecos de memoria, conhecidas
como ordenacido de bytes. Os termos little-endian ¢ big-endian descrevem esses métodos
distintos. Em um sistema little-endian, o byte menos significativo ¢ armazenado no menor
endere¢co de memoria, enquanto o byfe mais significativo ocupa o endereco mais alto. Por
exemplo, para o valor 1991994 = 0x001ES53A, a organizagdo seria 0x3A no menor endereco €
0x00 no maior. Em contraste, em um sistema big-endian, a organizacao ¢ inversa: o byte mais
significativo ¢ armazenado no menor endereco € o menos significativo no maior. Assim, para
o mesmo valor, 0x00 estaria no menor endereco ¢ Ox3A no maior. A escolha entre esses
esquemas ¢ crucial para a interoperabilidade entre diferentes sistemas, pois garante que os
dados sejam interpretados corretamente pelo processador ao serem trocados entre sistemas
com diferentes ordenagdes. Compreender e aplicar a ordenacdo de bytes adequada maximiza
a eficiéncia e a compatibilidade no processamento de dados.
Most significant byte Least significant byte

1991994 = | . \ooooooooHoom 1110 01100101 0011 1010 |

T
Memory address 0x05 0x06 0x07 0x08

The most significant byte
(0x00) of the data is placed at Blg endian -
the byte with the lowest
address (0x05)

The least significant byte ﬁ

(OX3A) of the data is placed Little endian

at the byte with the lowest
address (0x05)

SEGMENTACAO DE MEMORIA PRINCIPAL

Para organizar e gerenciar eficientemente os recursos de memoria em sistemas embarcados,
garantindo a integridade e seguranca dos dados e instrugdes em execucao, ¢ comum adotar
uma abordagem de segmentacdo na memoria responsavel por armazenar dados e instrugdes
que o processador precisa acessar rapidamente durante a execug¢do de um programa. A
memoria utilizada para esse propoésito ¢ conhecida como meméria principal. Em linguagens
como C, essa segmentacdo reflete-se na forma como diferentes tipos de dados e codigo sdo
alocados e acessados. Cada segmento de memoria possui regras e comportamentos
especificos para o acesso € manipulagdo, alinhados com o tipo de dado que ele contém.

A memoria de instrucées, também conhecida como memoéria de programa ou segmento
de texto (do inglés, fext), desempenha o papel crucial de armazenar as instrucdes do
programa em execu¢do. Essas instrugdes sdo acessadas sequencialmente pelo processador e
interpretadas/executadas para gerar os sinais de controle necessarios. Contendo o codigo do
programa, a memoria de instrugdes delineia a sequéncia de operacdes a serem executadas
pelo processador. Geralmente, essa memoria ¢ designada como somente leitura, uma vez que

https://uynguyen.github.io/2018/04/30/Big-Endian-vs-Little-Endian/

o codigo do programa ndo devem sofrer modificacdes durante a execugdo. Em sistemas
embarcados, este segmento ¢ geralmente armazenado na memoria FLASH, uma vez que a
FLASH ¢ uma memoria ndo volatil que retém dados mesmo quando o sistema esta desligado.

A memoria de dados tem a finalidade de armazenar os dados utilizados pelo programa em
execucdo, abrangendo varidveis, vetores, estruturas de dados e outros elementos essenciais
para a execu¢do dos programas. Esses dados sdo passiveis de leitura, escrita e manipulagao
pelo processador conforme necessario durante a execugdo do programa, o que torna
necessario o mapeamento dessa memoria em unidades fisicas de memdoria regravaveis, como
a SRAM.

Para uma organizagdo eficiente e gerenciamento otimizado dos diversos tipos de dados
armazenados em um programa, sdo tipicamente delineados segmentos especificos na
memoria de dados. Entre eles, destacam-se o bss (do inglés Block Started by Symbol), rodata
(do inglés Read-Only Data), data, pilhas e heap. Essa distingdo facilita a alocagao,
manipulagdo e controle de diferentes categorias de dados. Muitas linguagens de programacao,

especialmente a C, associam diferentes tipos de dados a diferentes regides da memoria de
dados.

O segmento BSS ¢ projetado para variaveis com uma vida util que se estende por toda a
execugdo do programa, mas que nao sdo inicializadas explicitamente no codigo. Essas
variaveis sdo reservadas na memoria SRAM sem valores iniciais especificos; em vez disso,
um codigo de inicializagdo pode ser incluido no proprio cddigo principal para garantir que
este segmento seja zerado antes do inicio da execugdo do programa. A estratégia aqui € alocar
um bloco de dados para todas as varidveis ndo inicializadas em vez de alocar células de
memoria individuais para cada uma delas. Essa abordagem permite economizar tempo de
alocagdo e inicializacdo, uma vez que ndo ¢ necessario armazenar os valores iniciais dessas
variaveis. Tipicamente, este segmento fica armazenado na memoéria SRAM.

O segmento Rodata ¢ usado para armazenar dados somente leitura, como constantes e
literais. Esses dados sdo apenas lidos e ndo podem ser modificados durante a execu¢ao do
programa. Ao separar os dados somente leitura em um segmento especifico, € possivel
otimizar o acesso a esses dados e economizar espago, pois eles nao precisam ser duplicados
em diferentes partes do programa, podendo ficar no espago do arquivo executavel. Em
sistemas embarcados, esses dados sdao armazenados na memoria FLASH, pois eles nao
mudam durante a execuc¢ao do programa.

O segmento Data ¢ usado para armazenar varidveis que permanecem ativas durante toda a
execucdo do programa. Essas varidveis sdo inicializadas uma vez e podem ser modificadas
conforme o programa avanga. O espaco de cada varidvel ¢ alocado e inicializado
individualmente. Tipicamente, esse segmento reside entre o segmento text e o segmento BSS.

As pilhas (do inglés stacks) sao amplamente usadas em sistemas computacionais para
armazenar dados temporarios, necessarios dentro de um escopo especifico de fluxo de

controle, como vimos no Roteiro 3. Tendo suporte em hardware na maioria dos
processadores, € apenas necessario organizar um bloco contiguo de células na memoéria RAM
e armazenar o endereco do topo do bloco no registrador de ponteiro da pilha SP. Tipicamente,
os endere¢os armazenados no ponteiro de pilha sdo alinhados em 8 bits.

A memoria heap corresponde a um bloco de memoria RAM reservado para alocagdo
dindmica de posi¢des de memoria, isto €, alocacdo de posi¢des durante a execucdo de um
programa. Isso possibilita o compartilhamento de memoria entre diferentes partes de um
programa, podendo ser a Unica op¢do para microcontoladores com grandes restricdes de
memoria. A alocacdo/desalocagdo dinamica de memoria ndo ¢ ainda implementada por
circuitos especificos. Ela ¢ implementada por sofiware de um sistema operacional, como por
exemplo FreeRTOS, ou de uma biblioteca de gerenciamento de memoria dinamica, como em
C Bare Metal. Por determinismo e por automatizacao, recomenda-se minimizar o uso de
memoria heap em projetos de sistemas embarcados a nivel de bare metal. O gerenciamento
dindmico da memoria heap pode introduzir complexidade imprevisivel e afetar a
previsibilidade do sistema, o que ¢ critico para aplicagdes de tempo real e sistemas com
requisitos rigorosos de desempenho.

A figura a seguir ilustra a organizagdo dos diferentes segmentos de insrrucdes e dados na
memoria, incluindo areas distintas para codigo (text), dados estaticos, heap e pilha,

demonstrando como cada segmento ¢ alocado e gerenciado durante a execugdo de um
programa.

high
address 4 command-line arguments
and environment variables
stack
heap
uninitialized |n|t|a:3|zeedxgoczero
data(bss) y
initialized read from
data program file by
low text exec
address >

https://www.geeksforgeeks.org/memory-layout-of-c-program/

MEMORIA CACHE

Embora muitos microcontroladores nao incluam cache devido a consideragdes de custo e
simplicidade, a introducdo de cache em modelos mais avancados pode trazer significativos
ganhos de desempenho e eficiéncia. O cache ¢é particularmente vantajoso em aplicagdes mais
complexas ou exigentes, onde a reducdo da laténcia e a melhoria da eficiéncia energética sao
importantes. Em comparagdo com sistemas de alto desempenho, como CPUs que possuem
multiplos niveis de cache, os microcontroladores geralmente utilizam uma arquitetura de
cache mais simplificada. Tipicamente, esses dispositivos incorporam um unico nivel de cache
diretamente no nucleo do processador, o que ¢ adequado para atender as suas necessidades
mais especificas e restritas.

A meméria cache funciona como um “buffer” intermediario entre o processador e a memoria
principal. Baseando-se em estimativas e suposi¢cdes sobre o programa em execucao,
realiza-se uma copia das instrucoes e dados necessdrios no cache. Assim, quando o
processador acessa uma instru¢do ou dado, espera-se que ocorra um cache hit, ou seja, que a
instrucdo, ou o dado, ja esteja presente no cache. Se a maioria dos dados requisitados estiver
no cache, a laténcia média de acesso a memoria de instru¢des ou dados sera reduzida em
comparagdo com um sistema sem cache. No entanto, se o dado solicitado ndo estiver no
cache, ocorre um cache miss. Nesse caso, o processador deve buscar as instrugdes ou 0s
dados na memoria principal, o que demanda mais tempo num ciclo de acesso.

Endereco Meméria principal
no proceséador acessada se 0 endereco
ndo esta na cache
CACHE MEMORIA
A
PRINCIPAL
r 4 >
Comparacio Endereco ‘ ‘ Dados ‘ '
simultdnea I
com todos os :
enderecos ,
armazenados :
1)
v '
1)
................ 1)
»{ Endereco ndo
Endereco encontrado na
encontrado A J cache

Acesso ao dado
da cache

A transferéncia entre a memoria principal e o cache geralmente ocorre em blocos de
instrucdes e dados, conhecidos como linhas de cache. A expectativa de que ocorra um cache
hit nos acessos subsequentes ¢ baseada nos principios de localidade temporal e localidade
espacial. O cache € projetado para aproveitar essas propriedades, mantendo dados e
instrugdes frequentemente acessados ou adjacentes no cache para reduzir a laténcia de acesso
e melhorar a eficiéncia do sistema. A localidade temporal garante que dados ou instrugdes

recentemente acessados tenham uma alta probabilidade de serem reutilizados, enquanto a
localidade espacial garante que dados proximos ao recentemente acessado também sejam
carregados e disponiveis para acessos futuros. Com isso, o processador passa menos tempo
esperando para acessar a memoria principal € pode manter uma taxa de execucao mais alta.

Observe que, quando o dado ¢ modificado no cache, a memoria principal deve ser
consistentemente atualizada. Usa-se o bit “Dirty” para mostrar o estado de modificacio de
cada linha de cache. A figura sintetiza as diferentes politicas que podem ser adotadas na
leitura e escrita de dados na memoria principal com a presenca do cache.

Leitura Escrita
de Cache de Cache

N\ /N

Dado esta Dado nio esta Dado esta Dado n&o esta
na Cache na Cache na Cache na Cache

! | | |

Encaminhar Load Through Write Through Write Allocate
a palavra (Encaminhar a (Escrever dado (Trazer a linha
a8 CPU palavra tanto na cache para a cache,

engquanto a linha quanta na memoria depois atualizar)
de cache & principal) ou
preenchida) ou Write No-
ou Write Back Allocate
Preencher a (Escrever apenas (Arualizar
linha de cache e na cache. Adiar a apenas a
depois escrita na memoaria memoria
encaminhar a principal até o principal)
palavra flush).

Essencialmente, hé trés tipos principais de mapeamento de blocos de memoria principal para
o cache, conhecidos como métodos de mapeamento de cache: cache direto (em inglés,
direct-mapped cache), cache associativo por conjunto (em inglés, set-associative cache) e
cache totalmente associativo (em inglés, fully associative cache).

O cache direto ¢ o método mais simples e direto de mapeamento. Neste esquema, cada bloco
de memoria principal € mapeado para um Unico local especifico no cache. Ou seja, cada linha
1 de cache, Slot 1, pode armazenar dados de apenas uma linha, Bloco j, de memoria principal.
A decisdo de onde armazenar um bloco de memoria principal € feita através de um calculo
direto baseado no endereco da memoria, como i =j%m onde m ¢ a quantidade total de linhas
no cache. Isso facilita a implementacao e reduz a complexidade. No entanto, isso pode levar a
conflitos se varios blocos de memoria principal mapearem para o mesmo local no cache,
resultando em cache misses frequentes.

https://slideplayer.com.br/slide/4023867/

m{d D/ury 32 palavras por bloco

Tag

Slot 0 Bloco O
\—I—‘— Slot 1 Bloco 1
N .
Slot 2 .
L]
[]
. Bloco 214
[]

\—I—‘— Slot 214 - 1 Bloco 214+1

Memdria
cache

Bloco 217 - 1

Memoaria principal

No mapeamento de um endere¢o de memoria em um cache direto, divide-se o enderego em
trés campos: [Tag|Slot|Offset]:

Tag: identifica o bloco de memoria principal especifico.
Slot: Determina a linha de cache onde o bloco deve ser armazenado.

Offset: Indica a posicao do byte dentro do bloco de dados.

O cache associativo por conjunto oferece um equilibrio entre complexidade e flexibilidade.
Neste método, o cache, composto de m linhas, ¢ dividido em varios conjuntos, cada um
contendo k linhas. Cada bloco de memoéria principal, Bloco j, pode ser mapeado em qualquer
uma das k linhas dentro de um conjunto especifico. O conjunto ¢ determinado por (j%(m/k)),
onde m/k representa o numero total de conjuntos no cache. O nimero de linhas por conjunto,
k, € conhecido como associatividade do cache. Por exemplo, um cache associativo de 2 vias
(em inglés, 2-way associative) permite que cada bloco de memoria principal, Bloco j, seja
armazenado em qualquer uma de duas linhas dentro do conjunto identificado, como ilustra a
figura. Esta abordagem reduz os conflitos que podem ocorrer no cache direto, pois um bloco

de memoria principal tem mais opgdes de armazenamento, o que melhora a taxa de cache
hits.

Va{f’ D/UW 32 palavras por bloco

Tag

Slot 0 Bloco 0

\—‘—‘— Slot 1 Bloco 1

. .
Slot 2 .
[]
[]
. Bloco 128
[]
N .
Slot 214 -1 : Bloco 129
[]
Memoria :
cache
Bloco 217 - 1

Memodria principal

O endereco de memoria principal € dividido em trés campos: [Tag | Conjunto | Offset]. Nesse
esquema:

e Tag: Identifica de forma unica o bloco de dados especifico na memoria principal.
e Conjunto: Localiza o conjunto de cache onde o bloco pode estar armazenado.
e Offset. Especifica a posi¢ao do byte dentro do bloco de dados carregado na cache.

A localizagdo de um bloco de memoria principal dentro do conjunto de cache ¢ feita através
da comparagdao da 7ag de cada linha de cache do conjunto de cache com os bits mais
significativos do endereco de memoria.

O cache totalmente associativo ¢ o método mais flexivel e complexo, permitindo que
qualquer bloco de memoria principal seja armazenado em qualquer linha do cache. Nao ha
restricdes quanto ao local onde um bloco pode ser colocado, o que minimiza os conflitos e
maximiza a taxa de cache hits. No entanto, essa flexibilidade vem com um custo maior em
termos de hardware e complexidade, pois o sistema precisa verificar todas as linhas do cache
para encontrar um bloco especifico. Isso torna a implementacao e o gerenciamento do cache
mais complexos e dispendiosos.

Devido as suas restricdes de custo e complexidade, caches totalmente associativos sdo mais
comuns em sistemas de alto desempenho e processadores de servidores, onde o desempenho
e a flexibilidade sdo criticos e o custo de implementa¢do mais complexo pode ser justificado.
Em microcontroladores, sdo mais comuns caches direto ou associativo por conjunto, que
oferecem um bom equilibrio entre desempenho e custo, adequados para as necessidades
especificas e restricdes desses dispositivos.

MEMORIA FORTEMENTE ACOPLADA (TCM)

A memoria TCM (do inglés Tightly Coupled Memory) ¢ uma forma de memoria projetada
para operar extremamente proxima ao processador, oferecendo baixa laténcia e alta largura de
banda. Essa tecnologia ¢ comumente implementada usando SRAM e se comunica com a CPU
de forma direta e paralela, sem intermediarios como controladores de memoria que poderiam
adicionar laténcia.

A principal motiva¢do para a inclusdo da TCM em microcontroladores ¢ a necessidade de
acesso rapido e eficiente a dados e instrugdes criticos. Em aplicagdes que demandam alto
desempenho e baixa laténcia, como sistemas embarcados em tempo real, a TCM ¢ utilizada
para armazenar partes do codigo e dados frequentemente acessados. A proximidade da TCM
ao nucleo do processador reduz significativamente o tempo de acesso a memoria, melhorando
o desempenho geral do sistema. Isso ¢ alcancado ao evitar a laténcia associada ao acesso a
memorias mais lentas e distantes, como a memoria principal ou a memoria externa. O
diagrama de blocos a seguir ilustra a conexdo direta entre o processador e as memorias
SRAM e FLASH, que apresentam laténcias, via um controlador de TCM na arquitetura
Cortex-M7.

DMAC

[AHES]

Cortex-M7 processor

ITCM| |DTCM| AHBP [AXIM|
v v

| AHB matrix | [AHB bridge |

A 4 A 4 ¢ ¢ ¢

Fast Fast | [Low latency GPIO External
Flash SRAM | | peripherals memory

Figure 1-1 Example Cortex-M7 system

SISTEMA DE MEMORIA NO STM32H7A3

O seguinte texto extraido do Datasheet sumariza as unidades de memdria internas e externas
suportadas pelo microcontrolador STM32H7A3.

https://www.dca.fee.unicamp.br/cursos/EA701/STM32/stm32h7a3zi.pdf#page=1

Memories
« Upto 2 Mbytes of flash memory with read while write support, plus 1 Kbyte of
OTP memory

« ~1.4 Mbytes of RAM: 192 Kbytes of TCM RAM (inc. 64 Kbytes of ITCM RAM +
128 Kbytes of DTCM RAM for time critical routines), 1.18 Mbytes of user SRAM,
and 4 Kbytes of SRAM in Backup domain

« 2x Octo-SPI memory interfaces, |/O multiplexing and support for serial PSRAM/
NOR, Hyper RAM/flash frame formats, running up to 140 MHz in SRD mode and
up to 110 MHz in DTR mode

» Flexible external memory controller with up to 32-bit data bus:
— SRAM, PSRAM, NOR flash memory clocked up to 125 MHz in
Synchronous mode
- SDRAM/LPSDR SDRAM
— 8/16-bit NAND flash memories
« CRC calculation unit

O microcontrolador STM32H7A3, que utiliza o processador Cortex-M7 da ARM, apresenta
um sistema de memoria altamente otimizado para maximizar o desempenho em aplicagdes
complexas. A arquitetura do Cortex-M7, langada pela ARM em 2014, ¢ a primeira da série
Cortex-M a incluir cache de memoria de um nivel, marcando uma evolugdo significativa em
relagdo aos modelos anteriores. Esta arquitetura adota uma variante da arquitetura Harvard,
conhecida como Harvard modificada, que incorpora cache separado para instrugdes e dados.
Esse desenho de projeto melhora o desempenho ao reduzir conflitos e otimizar o acesso as
informagdes armazenadas, com cada tipo de cache especializado para o tipo de dado que
armazena.

O Manual de Cortex-M7 mostra que o cache de dados é configurado como um cache
associativo por conjunto de quatro vias, enquanto o cache de instru¢cdes € um cache
associativo por conjunto bidirecional. Ambos os caches utilizam linhas de 32 bytes, o que
permite que cada bloco de memoria principal seja carregado em uma linha de cache. Quando
todas as linhas de cache em um conjunto estdo ocupadas e um novo bloco precisa ser
carregado, o controlador de cache deve substituir uma linha existente para abrir espago para o
novo bloco de dados ou instrugdes. Os dados e instru¢cdes armazenados no cache sio
recuperados da memoria externa através da interface AXI Master (AXIM), e os controladores
de cache utilizam SRAMs integradas ao processador para armazenar temporariamente essas
informacodes durante a operagao.

O STM32H7A3 inclui a memodria TCM. De acordo com o Manual do Cortex-M7, a
arquitetura ARMV7E-M suporta acesso direto a essa memoria através da interface AHBS (do
inglés Advanced High-performance Bus Slave). Isso permite acesso quase instantineo a
dados e instrugdes criticos. Para garantir a integridade dos dados no sistema de memodria,
ajudando a detectar e prevenir erros de dados e aumentando a confiabilidade do sistema, o
microcontrolador ¢ provido de uma unidade CRC (do inglés Cyclic Redundancy Check) que é
responsavel por calcular e verificar o codigo CRC dos dados armazenados na memoria.

No ambiente integrado de desenvolvimento STM32CubelDE, o layout da memoria e a
alocagdo de espaco para diferentes segmentos, como instrugdes e dados, sdo definidos por
meio de um script de link, como vimos no Roteiro 2. Esse script, com a extensao “.1d”,
determina como a memoria ¢ organizada e onde cada tipo de dado e codigo serd armazenado.
No entanto, a pré-carga da memoria TCM, bem como a configuracao e ajuste dos caches de

https://www.dca.fee.unicamp.br/cursos/EA701/STM32/DDI0489B_cortex_m7_trm.pdf#page=95
https://www.dca.fee.unicamp.br/cursos/EA701/STM32/DDI0489B_cortex_m7_trm.pdf#page=2

instrugdes e dados, sdo realizadas no coddigo-fonte do firmware do desenvolvedor. Isso
envolve a configuracdo dos registradores especificos do processador para ajustar os
parametros do sistema de memoria conforme necessario.

O microcontrolador também oferece pinos para acesso a memorias externas, com modos de
operacdo que podem ser ajustados para otimizar o desempenho conforme as necessidades
especificas da aplicacdo. Entre esses modos, destacam-se o SRD (do inglés Single Read
Data) e o DTR (do inglés Dual Transfer Rate). No modo SRD, ¢ possivel transferir um dado
por ciclo de clock, adequado para operagdes bdsicas, enquanto o modo DTR permite a
transferéncia de dois dados por ciclo de relogio, oferecendo uma largura de banda
significativamente maior e melhorando a eficiéncia do sistema.

TIPOS DE DADOS EM C

No contexto da programagdo, a memoria do computador ¢ um grande bloco contiguo de
bytes, e esses bytes representam os dados que o soffware manipula. No entanto, a memoria
bruta, composta apenas por bytes, ndo ¢ diretamente compreensivel ou 1util em termos
praticos. Os tipos de dados fornecidos pelas linguagens de programacao transformam esses
blocos de bytes em formas mais legiveis e uteis. Cada tipo de dado € uma maneira especifica
de interpretar e organizar esses bytes, facilitando o acesso e a manipulacdo das informagdes.

Do ponto de vista computacional, os tipos basicos de dados processados pelo processador
sdo classificados em quatro categorias principais: nimeros inteiros sem sinal, nimeros
inteiros com sinal, numeros de ponto flutuante e caracteres alfanuméricos. Os caracteres
alfanuméricos incluem letras do alfabeto (tanto maitisculas quanto minusculas), os 10 digitos
arabicos e uma variedade de caracteres especiais, como hifen, travessdo, ponto e virgula.
Existem varias abordagens para realizar essa conversdo, € vamos explorar as mais comuns e
amplamente utilizadas nos sistemas computacionais modernos.

Tipos de Dados

Derivados Béasicos Definidos pelos
programadores

Array Struct

Function Union

Paimer Enum

Aritmética Aritmética de Void

de Inteiros Pontos Flutuantes ot
‘ int ‘ char ‘ floar ‘ double
I
| uitsigied char ‘ ‘ signed char ‘

1] ¥ t

unsigned short int ‘ ‘ unsigned long int ‘ ‘ signed short fm‘ | signed long int

Numeros Naturais ou Numeros Inteiros sem Sinal: O sistema de numeragao decimal,
amplamente conhecido, utiliza dez digitos (0 a 9) e adota a notag@o posicional, onde o digito
mais a direita tem o menor valor e cada posi¢do vale 10 vezes mais do que a posi¢ao
imediatamente a direita. No entanto, este sistema ndo se adapta a natureza binaria dos
computadores. Em contraste, o sistema bindrio, que usa apenas dois digitos (0 e 1), € mais
adequado para a representagdo em computadores. Nesse sistema, cada digito (ou bif) tem um
valor que ¢ o dobro do digito a sua direita, seguindo a notagdo posicional.

O sistema binario ¢ empregado para codificar nimeros naturais ou inteiros sem sinal. Com n
bits, & possivel representar até 2" valores distintos, variando de 0 até 2" - 1. Dado que a menor
unidade de armazenamento na maioria dos computadores € um byte (8 bits), a representacao
de numeros inteiros sem sinal geralmente € expressa em termos de bytes, podendo ser 1 byte,
2 bytes, 4 bytes ou 8 bytes, conforme a necessidade.

Para facilitar a manipulacdo e a leitura de grandes sequéncias bindrias, os bits sdo
frequentemente agrupados em blocos que correspondem a poténcias de 2, como 4 bits
(nibble), 8 bits (byte), e 16 bits. Entre esses sistemas, a notagdo hexadecimal ¢
particularmente Util em sistemas embarcados. O sistema hexadecimal, com base 16, utiliza os
digitos de 0 a 9 e as letras de A a F, que correspondem aos valores decimais de 10 a 15. Cada
digito hexadecimal representa um nibble (4 bits), facilitando a conversao entre binario e
hexadecimal e tornando a interpreta¢do dos dados mais eficiente.

Numeros Inteiros com Sinal: Numeros inteiros com sinal incluem tanto os numeros
positivos quanto os negativos. Para representar esses nimeros em bindrio destacam-se quatro
diferentes formas.

A primeira delas ¢ denominada representacdo de sinal e magnitude, em que um bit,
usualmente o bit mais significativo, ¢ reservado para representar o sinal do valor. Por
convencgao, 0 representa o sinal “+”, correspondendo a um numero positivo, e 1 representa
“-”, 0 que corresponde a um numero negativo. Esse bit ¢ chamado de bit de sinal. Cabe
ressaltar que o restante da sequéncia de bits, tanto para um niimero positivo quanto para um
negativo, € usada para o c6digo bindrio do médulo do valor.

A segunda representacdo ¢ conhecida como complemento de um, em que todos os nimeros
negativos sdo gerados a partir da sua contrapartida positiva, complementando bif a bit todos
os seus bits. Ou seja, troca-se os 0’s por 1’s, e vice-versa. Esta representagdo tem a
desvantagem de que hé dois cddigos bindrios associados ao niamero 0. Por exemplo, os dois
cddigos binarios 0000 e 1111 representam o valor zero para um conjunto de nimeros
representado por 4 bits.

A terceira alternativa € a representacdo por complemento de 2, que resolve o problema da
representacdo em complemento de 1 e que também facilita a realizacdo de operagdes
aritméticas sobre os numeros inteiros. A notagdo de complemento de 2 de um nimero
negativo ¢ obtida ao somar 1 a sua representagdo em complemento de 1. Com n bits nesta
notagdo, pode-se representar os valores de —2"! até 2™' — 1. O nimero 0 possui
representacdo unica e o bit mais significativo é o bit de sinal. E adotada a mesma convengio

das outras duas representagdes para interpretar o bit de sinal: se 0, entdo o numero € positivo,
sendo o numero € negativo. O interessante € que se quiser converter um niimero negativo em
complemento de 2 para a sua contrapartida positiva, também em complemento de 2, basta
complementar bit a bit o nimero e somar 1 ao resultado. Um problema observado nesta
representacdo ¢ a ordenagdo dos numeros pelos seus codigos binarios, pois uma simples
comparagdo de bits pode levar a conclusdes erradas se nao forem considerados o bif de sinal e
os valores absolutos dos nlimeros.

A quarta representagdo ¢ a representacdo de excesso-N. Esta representacdo usa o valor N
como um valor de deslocamento (polarizacdo), de forma que o codigo bindrio de N
corresponde ao niumero 0 e o cddigo binario com todos os bits zerados corresponde a —N.
Desta forma, pode-se ordenar os nimeros negativos e positivos comparando diretamente os
seus codigos binarios. Por exemplo, para o valor em decimal 35, a sua representacdo em
excesso-128 ¢ 35+128 = 163.

Pontos flutuantes: E importante notar que a quantidade distinta de valores que um conjunto
de n bits pode representar de forma tnica ¢ limitada a 2". No entanto, para representar uma
gama infinita de valores dentro de um intervalo real, utilizamos a representa¢ciao em ponto
flutuante. De acordo com o padrao IEEE 754, um niimero em ponto flutuante ¢ descrito em
notacao cientifica por trés componentes principais: sinal, expoente ¢ mantissa.

S -sinal | E - expoente | F(racdo) - mantissa

O campo de sinal ocupa um bit e determina se o nimero € positivo ou negativo, similar as
representacoes de numeros inteiros com sinal. Os campos de expoente e mantissa variam
conforme a precisao da representacdo. O padrao IEEE 754 define dois formatos principais:
precisao simples (32 bits ou 4 bytes) e precisao dupla (64 bits ou 8 bytes). Na precisao
simples, o expoente ¢ representado por 8 bits € a mantissa por 23 bits; na precisao dupla, o
expoente ¢ representado por 11 bits e a mantissa por 52 bits.

Na representacdo IEEE 754, os valores sdo organizados em intervalos que se estendem ao
longo da reta numérica real. A quantidade de bits alocados para a mantissa determina a
precisao dentro de cada intervalo, ou seja, quantos valores distintos podem ser representados
dentro de um intervalo especifico. Por outro lado, a quantidade de bits destinados ao expoente
define quantos desses intervalos estao disponiveis ao longo da reta real, com os valores do
expoente determinando a escala e a separacdo entre os intervalos. A medida que o valor do
expoente aumenta, a distancia entre os intervalos também aumenta exponencialmente,
mantendo simetria em relagdao ao zero na reta real.

O termo “ponto flutuante” se refere a capacidade de ajustar a posi¢cdo da virgula decimal,
através do expoente, permitindo a acomodacdo de numeros em diferentes ordens de
magnitude. Assim, a virgula “flutua” para se ajustar ao tamanho do numero, facilitando a
representacdo de uma ampla gama de valores com diferentes magnitudes. Essa flexibilidade
na posicado do ponto decimal facilita a representagdo precisa de nimeros muito grandes e

muito pequenos, como ilustrado na figura com os numeros representaveis ao longo da reta

real.
0§ 172 1§ 2§ 4§] 16§
nf ot 2% 2E =2k 228 248

A representacio de caracteres alfanuméricos se refere & maneira como letras do alfabeto
(maiusculas e mintsculas), nimeros e alguns caracteres especiais sdo codificados em
sistemas computacionais. Normalmente, isso ¢ feito atribuindo a cada caractere um codigo
numeérico unico, que ¢ armazenado e processado em forma binéria (sequéncia de Os e 1s). Os
sistemas de codificagdo mais comuns para caracteres alfanuméricos incluem o codigo ASCII
(American Standard Code for Information Interchange), o ASCII estendido ou EBCDIC
(sigla de Extended Binary Coded Decimal Interchange Code) e o Unicode (sigla de Universal
Coded Character Set). No codigo ASCII, por exemplo, cada caractere ¢ representado por um
numero inteiro de 7 ou 8 bits, permitindo a representagdo de 128 ou 256 caracteres diferentes,
respectivamente. A tabela abaixo sintetiza os 128 codigos ASCII dos caracteres de controle e
caracteres alfanuméricos representados em 7 bits. O codigo ASCII estendido expande essa
codificagdo, reservando valores adicionais dentro do intervalo de 8 bits (geralmente de 0 a
255) para representar caracteres adicionais, simbolos especiais, caracteres acentuados, letras
acentuadas usadas em varias linguas e outros caracteres que ndo estdo presentes no conjunto
ASCII original de 128 caracteres. Entre as diversas variantes do codigo ASCII estendido esta
o coédigo o Latin-1 (ISO 8859-1), amplamente usado para linguas européias. O codigo
Unicode ¢ mais abrangente e permite a representacdo de um conjunto muito maior de
caracteres de varias linguas e simbolos do mundo todo, usando codificagdes de 8, 16 ou 32
bits.

https://docs.oracle.com/cd/E19957-01/806-3568/ncg_math.html

Dec HxOct Char Dec He Oct Himl Chr |Dec Hy Oct Hirnl Chr| Dec Hx Oct Hirl Chr
0 0 000 NUL (null) 32 20 040 Space| 64 40 100 <#64: 0 | 96 60 140 `
1 1 001 50H (start of heading) 33 21 041 ! ! 65 41 101 «#65: 4 | 97 61 141 «#97:; a
2 2 002 5T (start of text) 34 22 042 " 66 42 102 «#66; B | 98 62 142 b b
3 3 003 ETX [(end of text) 35 23 043 «#35; # 67 43 103 «#67: C 99 63 143 £#99; C
4 4 004 EOT (end of transmission) 36 24 044 $ § 66 44 104 «#68; D (100 64 144 &#lo0; d
5 5 005 ENQ (enquiry) 37 25 045 %: % £9 45 105 =#69; E |101 65 145 e =
6 6 006 ACKE (acknowledge) 38 26 D46 &H38; & 70 46 106 «#70; F (102 66 146
Z; C
7 7 007 BEL (bell) 39 27 047 ' ¢ 71 47 107 =#71: G |103 67 147 g o
& 8 010 BS [backspace) 40 28 050 &40 | 72 48 110 «#72; H |104 68 150 «#104; h
9 9 011 TAE (horizontal tab) 41 2% 051)) 73 49 111 =«#73: I |105 69 151 i 1
10 A& 0OlZ LF (NL line feed, new line)| 42 2A 052 s#42; © 74 4h 112 «#74: J |106 64 152 j]
11 B 013 ¥T (wertical tah) 43 2B 053 + + 75 4B 113 K K |107 6B 153 k: k
12 C 0l4 FF (NP form feed, new page)| 44 2C 054 «#44; | 76 4C 114 «#76: L |l08 6C 154 l 1
13 D 015 CR (carriage return) 45 2D 055 - - 77 4D 115 &«#77: M |109 6D 155 m n
14 E 016 S0 (shift out) 46 Z2E D56 s#46: . 78 4E 116 «#78: N |110 6E 156 «#l110:; n
15 F 017 I (shift in) 47 2F 057 «#47; / 79 4F 117 &«#79: 0 |11l &F 157 &#lll; o
16 10 020 DLE (data link escape) 48 30 060 «#48; 0 80 50 1zZ0 «#580; P |112 70 le0 «#112: D
17 11 021 DC1 (dewice comtrol 1) 49 31 06l &F49; 1 Bl 51 121 «FB1l: 0 113 71 161 ll3;
18 12 022 DC2 (device control 2) 50 32 062 «#50; 2 G2 52 122 =#82; R |114 72 162 =#114; ¢
19 13 023 DC3 (dewvice control 3) 51 33 063 3 3 B3 53 123 «#B3: 5 |115 73 163 «§11S5; =
20 14 024 DC4 (dewice control 4) 52 34 064 «#52; 4 g4 54 124 «#584; T |116 74 1l6d &#lle; T
21 15 025 NAE (negative acknowledge) 53 35 065 5 5 B5 55 125 «#85: U 117 75 165 «#117: u
22 16 026 3TN (synchronous idle) 54 36 066 6 6 66 56 126 V:; ¥V |118 76 166 s v
23 17 027 ETE (end of trams. block) 55 37 067 7: 7 87 57 127 «#87: W |119 77 167 «#119; w
24 18 030 CAN (cancel) 56 38 070 8 & B8 58 130 &«#88:; X |120 76 170 &f1l20; x
25 19 031 EM (end of medium) 57 39 071 «#57: 2 B9 59 131 £«#89: ¥ |121 79 171 «#121: ¥
26 1A 032 5UB (substitute) 56 3A 072 «#58; : 90 SA 132 «#50:; I |l22 TA 172 &#liz; =
27 1B 033 E3C (escape) 59 3B 073 «#59; ; 91 SB 133 «#91: [(123 7B 173 { |
26 1C 034 F3 (file separator) 60 3C 074 «F60; < 92 S5C 134 «#92; \ (124 7C 174 &#l24; |
29 1D 035 G5 (group sSeparator) 61 3D 075 «#6l; = 93 SD 135 «#93:] |125 7D 175 })
30 1lE 036 RS (record separator) 62 3E 076 > 94 SE 136 «#94: * |126 TE 176 «#126;
31 1F 037 US (unit separator] 63 3F 077 ? 2 95 5F 137 <#95; 127 7F 177 =$127; DEL

501;-:3: www . Loolkup Tables .com

Em C, a representagdo de valores numéricos e caracteres alfa-numéricos esta diretamente
vinculada aos tipos de dados, influenciando o tamanho da memoria necessaria, enquanto os
qualificadores de tipo determinam o intervalo de valores e a representagdo dos dados. E a
alocacao da memoria e a duragdo da sua alocagdo sdo mais diretamente afetadas pelo escopo
da variavel (local, global, estatica) e pelo método de alocacgao (pilha, heap, alocagdo estatica).

Tipos de dados numéricos como “int”, com seus qualificadores “signed”, “unsigned”, “short”
e “long”, assim como “float” e “double”, sdo utilizados para armazenar valores inteiros e de
ponto flutuante. Cada tipo possui uma representacdo binaria especifica que define seu
tamanho e precisdo na memoria, sendo a representacdo de numeros inteiros com sinal
geralmente feita por meio do complemento de dois. Por outro lado, caracteres alfa-numéricos
sao representados pelo tipo “char”, que armazena caracteres individuais usando codigos
ASCII ou Unicode, convertendo letras e nimeros em valores inteiros manipulaveis. A
conversdao entre niumeros e caracteres ¢ facilitada por fun¢des de biblioteca e operadores,
permitindo a transformagao de dados entre diferentes formatos. A escolha do tipo de dado em
C ndo so6 determina o formato de armazenamento e manipula¢do dos valores, mas também
impacta como os dados sdo interpretados e utilizados pelo programa.

Além disso, a relagdo entre variaveis ¢ memoria em C ¢ determinada pelo escopo e pela vida
util das variaveis. Variaveis locais sdo alocadas na pilha (stack) e t€ém escopo e vida util
restritos ao bloco de codigo da fungao em que sdao declaradas, como discutido no Roteiro 3.
Variaveis globais e estaticas, por sua vez, sdo armazenadas no segmento de dados (“data”),
se inicializadas, ou no segmento de ndo inicializados (“bss”), se ndo inicializadas,

proporcionando um escopo global e uma vida til que se estende por toda a execugdo do
programa. Ja as variaveis alocadas dinamicamente, criadas com “malloc()” e “calloc()”, sdo
armazenadas na memoria heap e permanecem alocadas até serem explicitamente liberadas
com “free()”, independentemente do escopo das fungdes que as criaram. Em contraste, as
varidveis de alocacio estitica t€ém sua alocacdo definida no tempo de compilacdo. Além
disso, constantes e literais em C s3o armazenados no segmento de dados somente leitura
(“Rodata”), que ¢ geralmente alocado junto com as instrugdes do programa. Esse segmento ¢
projetado para conter dados que nao sdao modificados durante a execucdo, garantindo a

b

integridade e a prote¢ao dessas informacdes.

A figura abaixo sumariza a relagdo entre os tipos de dados declarados em C e a sua alocagao
nos diferentes segmentos de memoria.

Memory layout of C program
int A;
. Stack
int B=10;
main() { ‘
. Heap
int Alocal;
int *p " BSS Uninitialized data segment (bss)
p: (int*) mal lOC (4 O) H Data Initialized dafta segment
}
Sgce test.c
Ssize a.out Code
text data bss dec hex filename
1200 544 8 1752 6d8 a.out

r

Por fim, ¢ uma estratégia comum em programagdo de baixo nivel, especialmente em
desenvolvimento de sistemas embarcados, mapear nomes mais legiveis aos enderecos dos
registradores usando o tipo de dado “struct”:

1. Definicao de Estrutura: Define-se uma “struct” que mapeia cada registrador para um
membro da estrutura. Cada membro da “struct” representa um registrador especifico e
¢ associado a um endereco de memoria fixo que o fabricante definiu para esse
registrador.

2. Respeito aos Intervalos de Enderegos: O fabricante do microcontrolador ou
processador especifica os enderecos de memoria que cada registrador ocupa. Esses
enderecos sao geralmente documentados no datasheet do componente. Na definicao
da “struct”, esses enderecos sdo usados para inicializar os ponteiros ou offsets dos
campos da “struct”, garantindo que cada membro acesse o registrador correto.

3. Acesso aos Registradores: Com a “struct” definida e mapeada no endereco inicial do
bloco de registradores de um periférico/modulo, os registradores podem ser acessados
usando nomes de membros legiveis em vez de enderecos de memoria brutos. Isso
facilita a leitura e a escrita dos registradores, além de tornar o cddigo mais legivel e
manutenivel.

Os tipos basicos de dados sdao diretamente mapeados para a memoria como blocos de bytes.
Por exemplo, um tipo “int” pode ocupar 4 bytes, enquanto um “char” pode ocupar 1 byte. Os

https://www.geeksforgeeks.org/difference-between-malloc-and-calloc-with-examples/
https://www.geeksforgeeks.org/dynamic-memory-allocation-in-c-using-malloc-calloc-free-https://www.geeksforgeeks.org/dynamic-memory-allocation-in-c-using-malloc-calloc-free-and-realloc/and-realloc/
https://wahyu-ehs.medium.com/c-memory-division-text-code-segment-data-and-bss-ef7d76831d8b

tipos derivados de dados sdo, por sua vez, construidos a partir dos tipos bésicos e permitem
representar dados de formas mais complexas e estruturadas. Estes incluem:

e Vetor (Array): Um vetor ¢ uma colecdo de elementos do mesmo tipo armazenados
sequencialmente em blocos contiguos de memoria. Por exemplo, um vetor de tipo
float mapeia um bloco contiguoo de memoria onde cada float ocupa um espaco fixo.
Quando acessamos um elemento do vetor, estamos acessando uma parte especifica
desse bloco de bytes, calculando o deslocamento (offsef) com relagdo ao
enderego-base do vetor, ou seja o endereco do elemento de indice 0.

float *ptr;
0x0050

0x0052
ptr=&a; —> 0x0054
0x0056
ptre+; —— 0x0058
0X005A
floata[2] 0x005C
0X005E
floata[3] 0x0060
0x0062
0x0064
0x0066
0x0068
0X006A
0X006C
0X006E
0x0070
0x0072

floata[8] 0x0074
16-bit Data Memory Words 0x0076

VWWWWWWW

Incrementing ptr moves it
to the next sequential
float array element

floata[7]

SCALER

‘ﬁfaws

e Matriz: Uma matriz ¢ uma extensdo do vetor para mais de uma dimensao. Quando
mapeada na memoria, uma matriz ¢ armazenada como um bloco contiguo de bytes,
mas ¢ interpretada de forma a representar linhas e colunas. Cada elemento da matriz é
acessado com base em uma formula que considera a sua posi¢do em ambas as
dimensodes. Isso permite que o mesmo bloco de memoria seja visualizado e acessado
como uma estrutura bidimensional, ao invés de apenas uma sequéncia linear, como
ilustra a figura.

w1l

- 1lD 1l1 1'2 -

https://eli.thegreenplace.net/2015/memory-layout-of-multi-dimensional-arrays

row,col

1

- 0'1 1l1 2;1 -

e Estrutura (“struct”): Uma estrutura ¢ uma combinagdo de diferentes tipos basicos e
derivados, agrupados em uma unica unidade. Por exemplo, uma estrutura pode conter
um “int”, um “char”, e um “float”. Na memoria, os campos da estrutura sio
organizados sequencialmente e podem haver inser¢des de padding para garantir

alinhamento, como ilustra a figura.

struct SRandomOrder
{

uint8_t m_bytel;
uint64_t m_long;
uints_t m_byte2;
uint32_t m_int;
uint8_t m_byte3;

i

Since the members cannot be re-order by compiler, to achieve proper data alignment this struct will be placed in
memaory (x86 architecture) like below — padding is presented as gray fields. The sizeof (SRandomQOrder) is equal to
24 bytes. Note there is only 15 bytes of data and 9 bytes of padding!

Structure with ineffective member placement

e Unido (“union”): Uma unido ¢ um tipo de dado que pode armazenar diferentes tipos
de dados na mesma area de memoria, mas apenas um tipo de cada vez. Isso significa
que, embora uma unido possa conter varios membros de diferentes tipos, todos
compartilham o mesmo bloco de memoéria. O tamanho total de uma unido ¢
determinado pelo tamanho do maior membro, garantindo que haja espaco suficiente
para armazenar qualquer um dos tipos que ela pode conter, como mostra a figura.
Assim, a unido oferece a flexibilidade de acessar o mesmo bloco de memoria de
diferentes formas, dependendo do tipo de dado em uso no momento.

https://research.nccgroup.com/2019/10/30/padding-the-struct-how-a-compiler-optimization-can-disclose-stack-memory/
https://www.cs.emory.edu/~cheung/Courses/255/Syllabus/2-C-adv-data/union.html

a
b
union myExample c
d -
{ 5850 Eﬂ c
int a; a
double b; -
short c; b
chard;
} -
5008

A habilidade de mapear um bloco de bytes em diferentes tipos de dados nos permite adaptar
a nossa representacdo e processamento dos dados conforme as necessidades especificas do
nosso programa. Isso ndo s¢ facilita a programacdo, mas também melhora a eficiéncia ao
utilizar a memoria de maneira mais eficaz. Por exemplo, em um contexto onde precisamos
processar dados sequenciais, um vetor pode ser a melhor escolha. Em outro contexto, onde os
dados sdao melhor representados em uma forma tabular ou matricial, uma matriz pode ser
mais adequada. Em ambos os casos, estamos acessando o mesmo bloco de byfes na memoria,
mas o tipo de dado utilizado altera a maneira como interpretamos e manipulamos esses byfes.

A regra basica de padding adotada pelos compiladores C visa garantir o alinhamento
adequado dos diferentes tipos de dados, como ilustra a alocagdo do bytes alocados para os
membros de uma “struct” na figura a seguir. Para o tipo “char”, os enderecos sao alinhados
por byte. J& para o tipo “unitl6_t” (“short” nos processadores de 32 bits), os enderegos sdo
alinhados em enderecos pares. No caso dos tipos “uint32 t” (“int” nos processadores de 32
bits) e “float”, o alinhamento ocorre em enderecos multiplos de 4 bytes. Por fim, para o tipo
“uint64 t” (“double” nos processadores de 32 bits), os enderecos sao alinhados em multiplos
de 8 bytes. O tamanho total do bloco de memoria alocado deve ser sempre multiplo de 4 em
um processador de 32 bits.

struct foo {
char a;
uintl6 tb;
int32 tc;

Iy

https://ncmiller.dev/memory-alignment.html

