
DISCIPLINA EA701
Introdução aos Sistemas Embarcados

ROTEIRO 4: Organização de Memória e Tipos de Dados em C

TECNOLOGIAS DE MEMÓRIA, ALINHAMENTO E
ORDENAÇÃO DE BYTES, MAPA E SEGMENTAÇÃO DE

MEMÓRIA, MEMÓRIA CACHE E MEMÓRIA FORTEMENTE
ACOPLADA (TCM), SISTEMA DE MEMÓRIA NO
STM32H7A3ZIT6-Q, TIPOS DE DADOS EM C.

Profs. Antonio A. F. Quevedo e Wu Shin-Ting

FEEC / UNICAMP

Revisado em agosto de 2024

This work is licensed under Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 International. To view a copy of this
license, visit https://creativecommons.org/licenses/by-nc-sa/4.0/

https://creativecommons.org/licenses/by-nc-sa/4.0/

INTRODUÇÃO 2
UM PROJETO-EXEMPLO PARA EXPLORAR MEMÓRIA 3
TECNOLOGIAS DE MEMÓRIA: PROM, EPROM, EEPROM, FLASH NAND, NOR, SRAM e
DRAM 12
MAPA DE MEMÓRIA 16
ALINHAMENTO DE DADOS 19
ORDENAÇÃO DOS BYTES 20
SEGMENTAÇÃO DE MEMÓRIA PRINCIPAL 21
MEMÓRIA CACHE 24
MEMÓRIA FORTEMENTE ACOPLADA (TCM) 28
SISTEMA DE MEMÓRIA NO STM32H7A3 28
TIPOS DE DADOS EM C 30

INTRODUÇÃO

A memória é um componente fundamental em todos os sistemas computacionais. Nela são
armazenadas as instruções a serem executadas (código), bem como os valores de variáveis
usadas (dados) pelo programa. Os microcontroladores costumam ter a memória incluída no
chip, e alguns deles ainda permitem configurar parte de seus pinos para acesso a
componentes de memória externos aos mesmos.

Os dois tipos de memória mais usados em microcontroladores são a tecnologia FLASH e a
SRAM. A memória FLASH é uma memória não-volátil (preserva o conteúdo mesmo sem
energia) que pode ser apagada e gravada em blocos, e é normalmente usada para armazenar
de forma semi-permanente o código a ser executado, ao mesmo tempo permitindo que o
código seja modificado e regravado a partir de fontes externas, um processo que acontece
rotineiramente em atualizações de firmware nos equipamentos. A memória SRAM, ou RAM
estática, é uma memória volátil (perde os dados ao ser retirada a energia) com um custo e
tamanho maiores que os da memória DRAM (RAM dinâmica), porém de maior velocidade e
sem depender de um controlador específico. Para quantidades de memória RAM não muito
grandes, como é comum em microcontroladores, a SRAM é ideal. Esta memória é
normalmente usada para armazenar os valores de variáveis, na forma de alocação estática,
heap ou stack, dependendo do tipo de informação armazenada.

Um fator que determina o uso de certos tipos de memória é sua velocidade. A memória
SRAM é mais rápida que a FLASH para a leitura. Sistemas computacionais de maior porte
costumam carregar uma cópia da parte do código em uma memória SRAM dedicada para

acesso mais rápido, sendo esta memória denominada memória cache. Apesar de não ser tão
comum em sistemas microcontrolados, alguns microcontroladores, como o
STM32H7A3ZIT6-Q, possuem cache para otimizar a velocidade de execução. Entretanto, o
gerenciamento desta memória é algo bastante complexo. A TCM (do inglês Tightly Coupled
Memory) é mais comumente encontrada em microcontroladores e sistemas embarcados, onde
a proximidade e a alta velocidade de acesso são essenciais para o desempenho de tarefas
específicas. Esta memória especial é projetada para operar extremamente próxima ao
processador, oferecendo latências muito baixas e alta largura de banda.

Neste roteiro, veremos a organização dos diferentes tipos de memória, bem como seu uso
pelos diversos tipos de dados.

UM PROJETO-EXEMPLO PARA EXPLORARMEMÓRIA

1. Crie um projeto denominado “Memoria”, da mesma forma que foi feito nos roteiros
anteriores. Apague o código-fonte do arquivo “main.c” e o preencha com o seguinte código:

#include <stdint.h>
#include <malloc.h>
#include <string.h>
// Variaveis Globais inicializadas, armazenadas no segmento "data"
uint8_t global_var1 = 42;
// Variaveis Globais Não-inicializadas, armazenadas no segmento "BSS"
uint32_t uninitialized_var1;
// Variaveis constantes, armazenadas no segmento Rodata (FLASH)
const uint32_t const_var1 = 100;
// Variavel para demonstrar alocacao no "heap" e strings
char *heap_var;
// Outras variaveis a serem usadas na demonstracao
uint8_t *usig;
int16_t *sig;
int16_t k;
// Funcao para demonstrar o uso de qualificador register e static
uint32_t reg_demo(uint32_t v) {

//Var local
uint16_t reg_local;

// Var local com qualificador register
register uint32_t reg_var;
// Variaveis estaticas, armazenadas no segmento "data"
static uint8_t reg_static_var1 = 10;
reg_local = const_var1;
reg_var = v + 1;
reg_static_var1++;
if (reg_static_var1 == 0xff) reg_static_var1 = 0;
return reg_var;

}
volatile uint32_t *RCC_AHB4ENR = ((uint32_t *)0x58024540);
volatile uint32_t *GPIOB_MODER = ((uint32_t *)0x58020400);
volatile uint32_t *GPIOB_OTYPER = ((uint32_t *)0x58020404);
volatile uint32_t *GPIOB_ODR = ((uint32_t *)0x58020414);
#define ITERACOES 5000
int main(void)
{

struct mallinfo mi;
uint32_t i;
float *fp;
float x;
//Aloca 100 bytes para o vetor heap_var com 100 elementos do tipo
//char. Observe a conversao explicita de tipo de retorno "void"
//da funcao malloc para "char *"
heap_var = (char *)malloc(sizeof(char) * 100);
//Atribuir 200 a heap_var[0] que é equivalente a *heap_var
*heap_var = 200;
//Ler a informacao sobre alocacao de memoria
mi = mallinfo();
global_var1++;
uninitialized_var1 = 5;
//const_var1++;
global_var1 = reg_demo(10);
// A funcao copia a segunda string na primeira
// Por padrao, as variaveis processadas pelas funcoes da biblioteca
// "string" sao do tipo "char"
strcpy(heap_var, "This is a NULL-terminated String");
// Muda o espaço alocado
// Observe a conversao explicita do tipo de variavel heap_var
heap_var = (char *)realloc(heap_var, sizeof(uint8_t) * 200);
mi = mallinfo();
usig = (uint8_t *)0xAABBCCDD;
sig = &k;
k = -10;
fp = &x;
*fp = 3.375;
*RCC_AHB4ENR = *RCC_AHB4ENR | 0x00000002;
*GPIOB_MODER = ((*GPIOB_MODER | 0x00000001) & 0xFFFFFFFD);
*GPIOB_OTYPER = *GPIOB_OTYPER & 0xFFFFFFFE;
for(;;) {

*GPIOB_ODR = *GPIOB_ODR & 0xFFFFFFFE; //PB0 = 0;
for (i=0; i<ITERACOES; i++); // Espera
*GPIOB_ODR |= *GPIOB_ODR | 0x00000001; //PB0 = 1;
for (i=0; i<ITERACOES; i++); // Espera

}
}

Observe o uso do tipo de dado “struct mallinfo”. Este tipo de dado é fornecido por algumas
implementações da biblioteca padrão de alocação dinâmica de memória, como a GNU C
Library (glibc). Ele é utilizado para fornecer informações sobre a alocação de memória em
um programa que usa a função “malloc”, por meio da chamada da função “mallinfo()”. Para

que o compilador possa utilizar o tipo “struct mallinfo” e a função “mallinfo()”, é necessário
incluir o arquivo de cabeçalho “malloc.h” no código com a diretiva “#include <malloc.h>”.

2. Para podermos analisar o uso da memória pelo programa em diferentes estágios de ligação,
vamos ativar o ligador para que ele exiba estatísticas sobre o uso de memória. Com o projeto
selecionado no “Project Explorer”, use o menu principal “Project > Properties”. Na janela
que se abre, no painel à esquerda, expanda a opção “C/C++ Build” e selecione a opção
“Settings”.

3. Mantendo ativa a aba “Tool Settings”, no conjunto de opções encontre o conjunto “MCU
GCC Linker” e clique em “Miscellaneous” (expanda o conjunto se necessário).

4. No campo “Other flags” clique no botão com o símbolo de “+” em verde.

5. Na janela que se abre, digite “-Wl,--print-memory-usage” e clique no botão “OK”. O
“-W1”, informa ao GCC que as opções a seguir são para o ligador e não para o próprio
compilador. O “--print-memory-usage” é a opção específica para o linker que faz com que ele
exiba estatísticas sobre o uso de memória.

6. Adicionamos o comando “arm-none-eabi-size "${BuildArtifactFileName}”” para exibir,
na etapa de pós-construção, o tamanho das seções do arquivo binário
"${BuildArtifactFileName}” gerado pela compilação e ligação. Clique na aba “Build Steps”.
Na seção “Post-build steps” adicionar o comando: arm-none-eabi-size
"${BuildArtifactFileName}”

Vale destacar que este comando é incluído no comando anterior. Optamos por esta
redundância para mostrar o comando que exibe o tamanho dos segmentos de dados e
instruções em bytes.

7. Finalmente, clique no botão “Apply and Close”. Com estas configurações no projeto, ao se
realizar um “Build”, ao final do processo serão mostradas as seguintes informações, incluindo
a ocupação das unidades de memória físicas e o tamanho dos segmentos de instruções (text),
de dados inicializados (data) e dados não inicializados (bss). Esses tamanhos serão
apresentados tanto em decimal (dec) quanto em hexadecimal (hex), medidos em bytes.

Há duas tecnologias de RAM, SRAM (RAM estática) e DRAM (RAM dinâmica). A qual tipo
de RAM se refere na lista de informações?

8. Anote os valores apresentados, em termos de bytes e percentagem, do uso das unidades de
memória físicas. Identifique os tipos de memória usados para o segmento de instruções e de
dados inicializados e não-inicializados.

9. Clique no “Debug” para carregar o programa no microcontrolador. A perspectiva é
chaveada para “Debug” e o fluxo de execução deve estar pausado (pequena seta azul à
esquerda da linha) na linha “heap_var = (char *)malloc(sizeof(char));”

10. Na perspectiva de “Debug”, abra a aba “Expressions” e adicione as expressões conforme
a imagem abaixo. Com base nos endereços alocados para essas variáveis, identifique em qual
unidade de memória física elas estão armazenadas e determine se elas estão localizadas em
endereços mais baixos ou mais altos dentro dessa unidade de memória.

Note que todos os ponteiros são indicados por uma seta azul-escuro. A coluna “Value” mostra
o valor do ponteiro em si e não o valor para o qual ele aponta. À esquerda da seta pode-se
expandir a variável para mostrar o valor para o qual ela aponta clicando em “>”. Note que os
valores dos ponteiros não inicializados é zero.

11. Use o botão “Step Over” ou a tecla F6 para avançar uma linha de código. Execute as duas
próximas linhas e veja o que acontece com os valores das expressões. Olhe também a aba
“Variables”, que mostra “mi”. Esta variável contém as informações sobre a alocação de
“heap_var”, especialmente o elemento “uordblks”, que indica o número de bytes alocados
dinamicamente pelo usuário. Quais outras variáveis são mostradas nesta aba? Qual é a função
em execução? Podemos dizer que a aba “Variables” apenas mostra variáveis locais da função
em execução? Veja os endereços das variáveis que estão nesta aba. identifique em qual
unidade de memória física elas estão armazenadas e determine se elas estão localizadas em
endereços mais baixos ou mais altos dentro dessa unidade de memória.

12. Execute as duas linhas seguintes, que modificam valores em variáveis. Veja o que
acontece com os seus valores na aba “Expressions”.

13. Ao chegar na linha “global_var1 = reg_demo(10);”, ao invés de usar “Step over” (Tecla
F6), use o botão “Step Into” (Tecla F5) para entrar na função. Veja o que acontenceu com a
última linha da aba “Expressions”. Por que foi preenchida esta linha depois da chamada da
função?

14. Vá para a aba “Variables” e veja as variáveis mostradas. Em qual função são utilizadas
estas variáveis? Observe também que o campo “Location” da variável “reg_var” está vazio.
Mude para a aba “Registers” e veja os registradores de uso geral. Um deles deve ter o valor
“10” (ou “0xa”) passado para a função. Volte para a aba “Variables”. Execute, passo a passo,
as instruções e veja o que acontece depois da execução da linha “reg_var = v + 1;” Volte para a
aba “Registers” e veja se há algum registrador de uso geral com o mesmo valor no campo
“Value” da variável “reg_var”. Qual foi o efeito do qualificador “register” na declaração da

variável “reg_var” dentro da função “reg_demo()”? Você poderia classificar esta variável
como local ou global?

15. Vá para a aba “Memory” e analise a ordenação de bits das variáveis. São ordenados em
little-endian ou em big-endian? Verifique ainda se as variáveis estão alocadas em espaços
contíguos de memória, ou seja, se elas ficam adjacentes uma à outra. Caso contrário,
identifique quais variáveis têm "buracos" entre elas e explique por que o compilador e o
ligador podem não otimizar a alocação de memória para manter as variáveis consecutivas.

16. Ao sair da função, execute a instrução seguinte. Veja o valor do ponteiro “heap_var” e, na
aba “Memory”, crie um monitor para o endereço definido no ponteiro. Clique com o botão
DIREITO em qualquer célula e selecione “Format”. Na janela que se abre, mude o valor de
“Column Size” para 1. Além disso, adicione uma nova renderização clicando em “+” e
selecione “ASCII” como novo formato de renderização. Compare os valores hexadecimais
dos bytes com os códigos ASCII. Note que a linguagem C usa um valor para indicar que a
string terminou. Qual é este valor?

16. Execute as duas instruções a seguir e observe o efeito sobre a variável “mi”. Você
consegue explicar o que a função “realloc” faz?

17. Execute as instruções até a linha “for(;;);”. Em seguida, vá para a aba "Monitor" e
examine o conteúdo da memória a partir do endereço “0x58024400”. Compare os valores
exibidos nas células de memória com os valores dos registradores do periférico RCC na aba
"SFRs". Por que há tanta semelhança entre esses dois conjuntos de valores? O tipo de dado
“struct” em C permite mapear um bloco de memória, como o intervalo de “0x58024400” a
“0x5802457F”, associando grupos de células de memória com nomes de registradores
mapeados. Isso facilita a organização e a leitura dos dados na memória, rotulando os grupos
de células conforme os registradores correspondentes.

18. Onde está localizada a constante “const_var1”? Por quê?

19. Termine a execução do programa (CTRL+F2). Volte para o editor da perspectiva
“C/C++”. Apague as barras de comentário (“//”) da linha “const_var1++;” e tente realizar um
“Build”. O que acontece? Dica: Sempre leia atentamente as mensagens de erros e avisos.

20. Com base na sua análise, organize os segmentos Code, Data, BSS, Stack e Heap de
acordo com seus endereços de memória. Verifique se o layout desses segmentos segue a
ordenação típica, do endereço mais baixo para o mais alto: Code, Data, BSS, Heap e Stack.
Com base na sua análise, organize os segmentos Code, Data, BSS, Stack e Heap conforme os
endereços da memória. Certifique se o layout desses segmentos seguem a ordenação, de
endereço mais baixo para o mais alto, Code, Data, BSS, Heap e Stack.

TECNOLOGIAS DE MEMÓRIA: PROM, EPROM, EEPROM,
FLASH NAND, NOR, SRAM e DRAM

Entre as principais tecnologias de memória estão PROM, EPROM, EEPROM, SRAM,
DRAM, FLASH NAND e FLASH NOR, cada uma com suas particularidades e aplicações
específicas.

OTP (do inglês One-Time Programmable) refere-se a um tipo de memória que pode ser
programada apenas uma vez. Após a gravação inicial, os dados armazenados na memória
OTP não podem ser alterados. Nos microcontroladores, a memória OTP é aplicada no
armazenamento de informações permanentes, identificadores únicos, códigos de configuração
e dados de calibração. Além disso, é utilizada para armazenar dados de segurança, como
chaves criptográficas. Existem várias tecnologias utilizadas para implementar a memória
OTP em microcontroladores. Uma das tecnologias mais comuns é a PROM (do inglês
Programmable Read-Only Memory). A PROM é uma memória não-volátil, programada
uma única vez através de um processo que envolve a aplicação de uma alta tensão para fundir
fusíveis internos, alterando permanentemente a configuração da memória.

Outra tecnologia relacionada é a EPROM (do inglês Erasable Programmable Read-Only
Memory), que pode ser apagada com luz ultravioleta e reprogramada. Embora a EPROM seja
reprogramável, em alguns casos ela é utilizada como uma memória OTP quando a capacidade

https://www.electricaltechnology.org/2020/05/types-computer-memory.html
https://www.electricaltechnology.org/2020/05/types-computer-memory.html

de apagamento não é necessária. A memória EPROM utiliza células baseadas em transistores
de porta flutuante. Durante a programação, uma alta tensão é aplicada, resultando em uma
descarga de avalanche de elétrons que se acumula no eletrodo da porta. Essa carga é isolada
pela porta flutuante, impedindo seu vazamento e garantindo que os dados sejam armazenados
de forma permanente. Para apagar os dados, é necessário expor a EPROM à luz ultravioleta,
que dissipa a carga acumulada. Apesar de sua capacidade de ser reprogramada, a EPROM é
considerada uma memória não-volátil porque mantém seu conteúdo mesmo quando o chip é
desenergizado.

Desenvolvida para substituir o processo de apagamento por luz ultravioleta da EPROM, os
bytes individuais da EEPROM (do inglês Electrically Erasable Programmable Read-Only
Memory) podem ser apagados e reprogramados diretamente dentro do circuito usando um
circuito de programação especial. Embora a EEPROM permita a reprogramação byte a byte,
o que pode resultar em uma operação relativamente mais lenta, a memória FLASH, que é um
tipo de EEPROM, foi projetada para oferecer alta velocidade. A memória FLASH possui um
número limitado de ciclos de reprogramação, cerca de 10 mil, enquanto os modelos mais
recentes de EEPROM podem suportar até 1 milhão de ciclos. Apesar de a EEPROM ser mais
cara, a memória FLASH enfrenta a desvantagem de exigir a exclusão de grandes blocos de
memória, em vez de bytes individuais

A memória FLASH é baseada em transistores de efeito de campo (FET) com uma camada
adicional de porta flutuante. O nome FLASH deriva da ideia de flash em inglês, que
transmite a ideia de algo que ocorre rapidamente, refletindo a capacidade da memória de
apagar e gravar dados rapidamente. Em dispositivos semicondutores, o tunelamento é um
fenômeno quântico que permite que elétrons atravessem barreiras de potencial que, segundo a
física clássica, seriam intransponíveis. No caso da memória FLASH, o fenômeno específico
conhecido como tunelamento Fowler-Nordheim permite que uma carga elétrica seja
transferida para a porta flutuante do transistor, representando dados na memória. Quando um
transistor é “programado” ou “escrito”, uma carga é colocada na porta flutuante através do
tunelamento Fowler-Nordheim. A presença ou ausência dessa carga define o valor dos bits,
com a carga representando um bit “0” e a ausência de carga representando um bit “1”. No
estado não programado, as células de memória FLASH geralmente correspondem ao valor
lógico “1” (ou nível alto).

FLASH NAND é um tipo de memória não-volátil que armazena dados em células dispostas
em série dentro de cada linha de bit. Essa configuração faz com que a lógica da leitura dessas
células se assemelha à lógica de uma porta NAND. Assim como uma porta NAND retorna
uma saída baixa apenas se todas as entradas são altas, a leitura de uma linha de células em
série depende do estado de todas as células na linha. Se qualquer célula na série estiver em
um estado que impede a passagem de corrente, a leitura geral da linha é afetada. As células
conectadas em série são, por sua vez, agrupadas em páginas, e essas páginas são organizadas
em blocos. Devido à estrutura em série, o apagamento deve ser realizado em blocos inteiros,
o que é eficiente para limpar grandes áreas de memória, mas impede o apagamento e a
gravação de células individuais. A gravação, por outro lado, é realizada por páginas, o que
permite a escrita de dados em uma página específica dentro de um bloco.

Essa arquitetura é amplamente utilizada em dispositivos de armazenamento devido à sua alta
densidade e custo relativamente baixo. A memória FLASH NAND é ideal para aplicações
que requerem grandes capacidades de armazenamento, como cartões de memória e unidades
SSD (do inglês Solid State Drives). No entanto, a principal desvantagem é que a escrita e o
apagamento devem ser feitos em blocos inteiros, o que pode reduzir a eficiência em

https://pt.wikipedia.org/wiki/Mem%C3%B3ria_flash

operações de leitura e escrita aleatória. Por essas razões, a FLASH NAND é menos comum
em microcontroladores, que frequentemente demandam acesso rápido e flexível a pequenas
porções de dados. A complexidade de controle e as limitações associadas à escrita e
apagamento em grandes blocos não se adequam bem às necessidades típicas de desempenho
e flexibilidade para operações de código e dados em microcontroladores.

FLASH NOR é outra forma de memória não-volátil que armazena dados em células
conectadas diretamente a uma linha de bit e a uma linha de palavra. Esta configuração em
paralelo faz com que a leitura da memória FLASH NOR se assemelhar à lógica de uma porta
NOR, no sentido de que a detecção do estado da célula reflete um tipo de “comparação”
semelhante à verificação de todas as entradas em uma porta NOR. Se a célula está
programada (“0”) ou apagada (“1”), isso afeta a corrente medida e, por conseguinte, o
resultado da leitura, refletindo uma lógica baseada no estado da célula. Ao contrário da
FLASH NAND, que organiza as células em série e requer o acesso a blocos ou páginas
inteiras, a FLASH NOR permite a leitura e gravação de dados em células individuais ou em
unidades menores. Isso significa que um processador pode acessar diretamente qualquer
endereço da memória sem precisar ler blocos inteiros.

Essa característica faz da FLASH NOR uma escolha ideal para armazenar firmware e código
de inicialização que precisa ser acessado rapidamente. Sua arquitetura proporciona acesso
aleatório direto, facilitando operações de leitura. No entanto, é geralmente mais lenta para
operações de escrita e tem uma capacidade de armazenamento menor em comparação com a
FLASH NAND. Por essas razões, a FLASH NOR é frequentemente preferida em aplicações
que exigem execução direta de código da memória, como em sistemas embarcados e
firmware de dispositivos.

https://en.m.wikipedia.org/wiki/Flash_memory

SRAM (do inglês Static Random-Access Memory) é uma tecnologia de memória volátil que
se destaca pela sua alta velocidade e simplicidade de operação. Ao contrário da DRAM (do
inglês Dynamic RAM), que precisa ser periodicamente atualizada, a SRAM retém seus dados
enquanto a energia estiver sendo fornecida. Isso se deve ao seu componente interno, que
utiliza flip-flops para armazenar cada bit de informação. Essa estrutura permite acesso quase
instantâneo aos dados, o que a torna ideal para aplicações que requerem altas taxas de
transferência e baixa latência. No entanto, a SRAM é mais cara e consome mais energia por
bit armazenado comparada à DRAM e à memória FLASH, o que limita seu uso a tamanhos
relativamente menores.

DRAM (do inglês Dynamic Random Access Memory) é uma forma de memória volátil
amplamente utilizada para armazenar dados temporários em computadores e outros
dispositivos eletrônicos. A tecnologia da DRAM baseia-se em células de memória compostas
por capacitores e transistores. Cada célula de DRAM armazena um bit de dado através de um
capacitor que retém uma carga elétrica, representando um valor binário de 0 ou 1, enquanto
um transistor controla o acesso à carga para ler ou escrever dados na célula. Quando a
DRAM precisa ler um dado, o transistor é ativado para permitir a detecção da carga no
capacitor, que é então amplificada e interpretada. Para escrever dados, a carga do capacitor é
ajustada através do transistor para refletir o novo valor. Um aspecto importante da DRAM é

https://computationstructures.org/lectures/caches/caches.html
https://en.wikipedia.org/wiki/Dynamic_random-access_memory

que a carga no capacitor pode vazar ao longo do tempo, o que exige que o conteúdo da célula
seja periodicamente refrescado para manter a integridade dos dados.

Apesar de suas vantagens em termos de densidade de armazenamento, a DRAM não é
comumente utilizada em microcontroladores. Isso se deve principalmente à necessidade
constante de refresco (em inglês refreshing) dos dados, o que adiciona complexidade ao
sistema e aumenta o consumo de energia, tornando-a menos eficiente para aplicações onde a
simplicidade e a eficiência energética são prioritárias. Além disso, a DRAM é mais cara e
complexa de implementar em comparação com outras tecnologias, como SRAM, que é
preferida em microcontroladores devido à sua simplicidade, menor custo e desempenho mais
rápido.

MAPA DE MEMÓRIA

A organização geral da memória de um sistema computacional pode ser vista no mapa de
memória. Este mapa divide a memória em blocos, usando como critérios o tipo de memória
e a utilização da mesma. A maioria dos microcontroladores ARM, por usarem registradores
de 32 bits, podem acessar um espaço de memória total de 4GB. Note que, apesar de a CPU
poder acessar todo este espaço, muitas vezes apenas parte dele está ocupado com elementos
físicos de memória. A conversão de um endereço no espaço de endereçamento do
processador para um endereço específico em uma unidade de memória física é realizada pelo
decodificador de endereços. Normalmente, o endereço é dividido em dois campos: [CS |
Offset]. O campo de bits mais significativos é usado para gerar o sinal de Seleção de Chip
(CS), que identifica qual unidade de memória física deve ser ativada. Já o campo de bits
menos significativos é utilizado para endereçar os bytes dentro da unidade de memória
selecionada. Nesse contexto, o valor Offset = 0 corresponde ao endereço-base, ou seja, o
endereço inicial do bloco contíguo em que a unidade de memória física está mapeada.

https://www.eeeguide.com/address-decoding-techniques-in-8086-microprocessor/

Segue-se um exemplo de circuito de decodificação dos endereços do processador de 24 bits
em sinais de Seleção de Chip de ROM1, ROM2, RAM, PERI1 e PERI2, sendo PER1 e PER2
dois periféricos mapeados no espaço de endereçamento do processador.

O Manual de Referência apresenta a organização de memória do microcontrolador
STM32HA3ZIT-Q, começando com a informação de que memórias de programa, dados,
registradores e portas de entrada/saída compartilham o mesmo espaço linear de 4 GB. A
Tabela 6 da seção 2.3.2 apresenta o mapa de memória, incluindo blocos reservados para
memórias externas e internas. Observe que os endereços de valores mais baixos estão no final

https://www.dca.fee.unicamp.br/cursos/EA701/STM32/rm0455-stm32h7a37b3-and-stm32h7b0-value-line-advanced-armbased-32bit-mcus-stmicroelectronics.pdf#page=129
https://www.dca.fee.unicamp.br/cursos/EA701/STM32/rm0455-stm32h7a37b3-and-stm32h7b0-value-line-advanced-armbased-32bit-mcus-stmicroelectronics.pdf#page=130

da tabela, enquanto os limites de cada bloco de memória são endereços alinhados em
múltiplos de 4 bytes. Internamente, os seguintes blocos estão ocupados por elementos físicos
de memória:

● Periféricos (0x4000 0000 a 0x5FFF FFFF): Espaço reservado para o acesso aos
registradores mapeados em memória dos periféricos. É importante notar que esses
elementos de memória não são do tipo SRAM ou FLASH; em vez disso, o acesso a
esses endereços é direcionado aos registradores dos diferentes periféricos do
microcontrolador.

● RAM (0x2000 0000 a 0x3FFF FFFF): Espaço da SRAM, dividido em vários blocos,
sendo alguns reservados (sem elementos físicos) e outros com blocos de SRAM
ligados a vários barramentos internos, Backup, SDR (do inglês Single Data Rate),
AHB (do inglês Advanced High-Performance) e AXI (do inglês Advanced eXtensible
Interface). Esses barramentos internos servem para interconectar a SRAM com
diferentes partes do sistema, cada um com suas características e finalidades
específicas.

● Code (0x0000 0000 a 0x1FFF FFFF): Área que inclui as memórias não-voláteis,
como memória de sistema (registradores que guardam configurações gerais do
microcontrolador), FLASH de código, e uma área OTP (do inglês One-Time
Programming, que não pode ser regravada, usada para guardar dados permanentes).

Note que a SRAM e os periféricos podem ser lidos e escritos diretamente pela CPU usando
instruções padrão, porém a região de Code, onde as instruções são armazenadas, permite
apenas leitura direta pela CPU, mas as escritas devem ser feitas através de um periférico
interno específico para gravação da FLASH.

ALINHAMENTO DE DADOS

A menor unidade de acesso a todas as memórias é o byte. O alinhamento de dados se refere
à organização dos dados na memória de forma que os endereços estejam alinhados conforme
a arquitetura do processador. Processadores modernos frequentemente exigem que os dados
sejam armazenados em endereços que são múltiplos de dois. Além disso, o barramento de
memória, que conecta o processador à memória principal, é projetado para transferir dados
em blocos do mesmo tamanho que a palavra de memória do processador. Quando os dados
estão alinhados com o limite de palavra (em inglês word), o processador pode acessar uma
palavra inteira em uma única operação, utilizando toda a largura do barramento. Isso permite
operações de leitura ou escrita em uma única transação, ao contrário dos dados desalinhados,

que exigem múltiplas transações. Assim, o alinhamento adequado maximiza a eficiência do
acesso à memória e melhora o desempenho geral do sistema.

Quando os dados não estão alinhados corretamente, o sistema precisa adicionar padding
(espaço não utilizado) para garantir o alinhamento adequado. Os paddings são bytes extras
inseridos entre os dados para ajustar o alinhamento. Isso pode causar um aumento
significativo no tamanho das estruturas de dados. Por exemplo, se uma estrutura contém um
“char” seguido de um “int”, o compilador pode adicionar bytes de padding entre eles para
garantir que o int esteja alinhado em um múltiplo de 4 bytes. No entanto, o uso de padding
pode resultar em desperdício de memória, especialmente em estruturas grandes ou em
sistemas com recursos limitados.

Para otimizar o alinhamento e evitar padding desnecessário, é fundamental organizar os
dados e estruturas de forma a minimizar o desperdício de memória. Isso pode ser feito
posicionando os membros maiores das estruturas antes dos menores, alinhando dados de
acordo com o tamanho da palavra do processador e utilizando diretivas de alinhamento
fornecidas pelo compilador. Além disso, a análise e o ajuste do layout das estruturas para
garantir que os dados estejam alinhados com os múltiplos adequados pode reduzir a
quantidade de padding necessário. Técnicas como a reorganização de membros em estruturas
e o uso das ferramentas de compilação ajudam a melhorar o uso da memória e a eficiência do
sistema.

Por exemplo, considere uma tabela contendo quatro colunas do tipo “smallint” e uma coluna
do tipo “bigint”, se uma coluna “smallint” (2 bytes) for seguida por uma coluna “bigint” (8
bytes), o sistema adiciona 6 bytes de preenchimento após a coluna “smallint” para garantir
que a coluna “bigint” esteja alinhada a um limite de 8 bytes. No entanto, ao reorganizar as
colunas “smallint” para que todas elas precedam a coluna “bigint”, é possível otimizar o
layout da tabela e reduzir a necessidade de preenchimento. Por exemplo, ao posicionar todas
as quatro colunas “smallint” antes da coluna “bigint”, pode-se minimizar o espaço de
preenchimento necessário e usar a memória de forma mais eficiente.

ORDENAÇÃO DOS BYTES

https://atlasgo.io/guides/postgres/pg-110

Como uma palavra de memória do processador pode conter mais de um byte, existem duas
estratégias principais para a organização desses bytes nos endereços de memória, conhecidas
como ordenação de bytes. Os termos little-endian e big-endian descrevem esses métodos
distintos. Em um sistema little-endian, o byte menos significativo é armazenado no menor
endereço de memória, enquanto o byte mais significativo ocupa o endereço mais alto. Por
exemplo, para o valor 1991994 = 0x001E53A, a organização seria 0x3A no menor endereço e
0x00 no maior. Em contraste, em um sistema big-endian, a organização é inversa: o byte mais
significativo é armazenado no menor endereço e o menos significativo no maior. Assim, para
o mesmo valor, 0x00 estaria no menor endereço e 0x3A no maior. A escolha entre esses
esquemas é crucial para a interoperabilidade entre diferentes sistemas, pois garante que os
dados sejam interpretados corretamente pelo processador ao serem trocados entre sistemas
com diferentes ordenações. Compreender e aplicar a ordenação de bytes adequada maximiza
a eficiência e a compatibilidade no processamento de dados.

SEGMENTAÇÃO DE MEMÓRIA PRINCIPAL

Para organizar e gerenciar eficientemente os recursos de memória em sistemas embarcados,
garantindo a integridade e segurança dos dados e instruções em execução, é comum adotar
uma abordagem de segmentação na memória responsável por armazenar dados e instruções
que o processador precisa acessar rapidamente durante a execução de um programa. A
memória utilizada para esse propósito é conhecida como memória principal. Em linguagens
como C, essa segmentação reflete-se na forma como diferentes tipos de dados e código são
alocados e acessados. Cada segmento de memória possui regras e comportamentos
específicos para o acesso e manipulação, alinhados com o tipo de dado que ele contém.

A memória de instruções, também conhecida como memória de programa ou segmento
de texto (do inglês, text), desempenha o papel crucial de armazenar as instruções do
programa em execução. Essas instruções são acessadas sequencialmente pelo processador e
interpretadas/executadas para gerar os sinais de controle necessários. Contendo o código do
programa, a memória de instruções delineia a sequência de operações a serem executadas
pelo processador. Geralmente, essa memória é designada como somente leitura, uma vez que

https://uynguyen.github.io/2018/04/30/Big-Endian-vs-Little-Endian/

o código do programa não devem sofrer modificações durante a execução. Em sistemas
embarcados, este segmento é geralmente armazenado na memória FLASH, uma vez que a
FLASH é uma memória não volátil que retém dados mesmo quando o sistema está desligado.

A memória de dados tem a finalidade de armazenar os dados utilizados pelo programa em
execução, abrangendo variáveis, vetores, estruturas de dados e outros elementos essenciais
para a execução dos programas. Esses dados são passíveis de leitura, escrita e manipulação
pelo processador conforme necessário durante a execução do programa, o que torna
necessário o mapeamento dessa memória em unidades físicas de memória regraváveis, como
a SRAM.

Para uma organização eficiente e gerenciamento otimizado dos diversos tipos de dados
armazenados em um programa, são tipicamente delineados segmentos específicos na
memória de dados. Entre eles, destacam-se o bss (do inglês Block Started by Symbol), rodata
(do inglês Read-Only Data), data, pilhas e heap. Essa distinção facilita a alocação,
manipulação e controle de diferentes categorias de dados. Muitas linguagens de programação,
especialmente a C, associam diferentes tipos de dados a diferentes regiões da memória de
dados.

O segmento BSS é projetado para variáveis com uma vida útil que se estende por toda a
execução do programa, mas que não são inicializadas explicitamente no código. Essas
variáveis são reservadas na memória SRAM sem valores iniciais específicos; em vez disso,
um código de inicialização pode ser incluído no próprio código principal para garantir que
este segmento seja zerado antes do início da execução do programa. A estratégia aqui é alocar
um bloco de dados para todas as variáveis não inicializadas em vez de alocar células de
memória individuais para cada uma delas. Essa abordagem permite economizar tempo de
alocação e inicialização, uma vez que não é necessário armazenar os valores iniciais dessas
variáveis. Tipicamente, este segmento fica armazenado na memória SRAM.

O segmento Rodata é usado para armazenar dados somente leitura, como constantes e
literais. Esses dados são apenas lidos e não podem ser modificados durante a execução do
programa. Ao separar os dados somente leitura em um segmento específico, é possível
otimizar o acesso a esses dados e economizar espaço, pois eles não precisam ser duplicados
em diferentes partes do programa, podendo ficar no espaço do arquivo executável. Em
sistemas embarcados, esses dados são armazenados na memória FLASH, pois eles não
mudam durante a execução do programa.

O segmento Data é usado para armazenar variáveis que permanecem ativas durante toda a
execução do programa. Essas variáveis são inicializadas uma vez e podem ser modificadas
conforme o programa avança. O espaço de cada variável é alocado e inicializado
individualmente. Tipicamente, esse segmento reside entre o segmento text e o segmento BSS.

As pilhas (do inglês stacks) são amplamente usadas em sistemas computacionais para
armazenar dados temporários, necessários dentro de um escopo específico de fluxo de

controle, como vimos no Roteiro 3. Tendo suporte em hardware na maioria dos
processadores, é apenas necessário organizar um bloco contíguo de células na memória RAM
e armazenar o endereço do topo do bloco no registrador de ponteiro da pilha SP. Tipicamente,
os endereços armazenados no ponteiro de pilha são alinhados em 8 bits.

A memória heap corresponde a um bloco de memória RAM reservado para alocação
dinâmica de posições de memória, isto é, alocação de posições durante a execução de um
programa. Isso possibilita o compartilhamento de memória entre diferentes partes de um
programa, podendo ser a única opção para microcontoladores com grandes restrições de
memória. A alocação/desalocação dinâmica de memória não é ainda implementada por
circuitos específicos. Ela é implementada por software de um sistema operacional, como por
exemplo FreeRTOS, ou de uma biblioteca de gerenciamento de memória dinâmica, como em
C Bare Metal. Por determinismo e por automatização, recomenda-se minimizar o uso de
memória heap em projetos de sistemas embarcados a nível de bare metal. O gerenciamento
dinâmico da memória heap pode introduzir complexidade imprevisível e afetar a
previsibilidade do sistema, o que é crítico para aplicações de tempo real e sistemas com
requisitos rigorosos de desempenho.

A figura a seguir ilustra a organização dos diferentes segmentos de insrruções e dados na
memória, incluindo áreas distintas para código (text), dados estáticos, heap e pilha,
demonstrando como cada segmento é alocado e gerenciado durante a execução de um
programa.

https://www.geeksforgeeks.org/memory-layout-of-c-program/

MEMÓRIA CACHE

Embora muitos microcontroladores não incluam cache devido a considerações de custo e
simplicidade, a introdução de cache em modelos mais avançados pode trazer significativos
ganhos de desempenho e eficiência. O cache é particularmente vantajoso em aplicações mais
complexas ou exigentes, onde a redução da latência e a melhoria da eficiência energética são
importantes. Em comparação com sistemas de alto desempenho, como CPUs que possuem
múltiplos níveis de cache, os microcontroladores geralmente utilizam uma arquitetura de
cache mais simplificada. Tipicamente, esses dispositivos incorporam um único nível de cache
diretamente no núcleo do processador, o que é adequado para atender às suas necessidades
mais específicas e restritas.

A memória cache funciona como um “buffer” intermediário entre o processador e a memória
principal. Baseando-se em estimativas e suposições sobre o programa em execução,
realiza-se uma cópia das instruções e dados necessários no cache. Assim, quando o
processador acessa uma instrução ou dado, espera-se que ocorra um cache hit, ou seja, que a
instrução, ou o dado, já esteja presente no cache. Se a maioria dos dados requisitados estiver
no cache, a latência média de acesso à memória de instruções ou dados será reduzida em
comparação com um sistema sem cache. No entanto, se o dado solicitado não estiver no
cache, ocorre um cache miss. Nesse caso, o processador deve buscar as instruções ou os
dados na memória principal, o que demanda mais tempo num ciclo de acesso.

A transferência entre a memória principal e o cache geralmente ocorre em blocos de
instruções e dados, conhecidos como linhas de cache. A expectativa de que ocorra um cache
hit nos acessos subsequentes é baseada nos princípios de localidade temporal e localidade
espacial. O cache é projetado para aproveitar essas propriedades, mantendo dados e
instruções frequentemente acessados ou adjacentes no cache para reduzir a latência de acesso
e melhorar a eficiência do sistema. A localidade temporal garante que dados ou instruções

recentemente acessados tenham uma alta probabilidade de serem reutilizados, enquanto a
localidade espacial garante que dados próximos ao recentemente acessado também sejam
carregados e disponíveis para acessos futuros. Com isso, o processador passa menos tempo
esperando para acessar a memória principal e pode manter uma taxa de execução mais alta.

Observe que, quando o dado é modificado no cache, a memória principal deve ser
consistentemente atualizada. Usa-se o bit “Dirty” para mostrar o estado de modificação de
cada linha de cache. A figura sintetiza as diferentes políticas que podem ser adotadas na
leitura e escrita de dados na memória principal com a presença do cache.

Essencialmente, há três tipos principais de mapeamento de blocos de memória principal para
o cache, conhecidos como métodos de mapeamento de cache: cache direto (em inglês,
direct-mapped cache), cache associativo por conjunto (em inglês, set-associative cache) e
cache totalmente associativo (em inglês, fully associative cache).

O cache direto é o método mais simples e direto de mapeamento. Neste esquema, cada bloco
de memória principal é mapeado para um único local específico no cache. Ou seja, cada linha
i de cache, Slot i, pode armazenar dados de apenas uma linha, Bloco j, de memória principal.
A decisão de onde armazenar um bloco de memória principal é feita através de um cálculo
direto baseado no endereço da memória, como i = j%m onde m é a quantidade total de linhas
no cache. Isso facilita a implementação e reduz a complexidade. No entanto, isso pode levar a
conflitos se vários blocos de memória principal mapearem para o mesmo local no cache,
resultando em cache misses frequentes.

https://slideplayer.com.br/slide/4023867/

No mapeamento de um endereço de memória em um cache direto, divide-se o endereço em
três campos: [Tag|Slot|Offset]:

Tag: identifica o bloco de memória principal específico.

Slot: Determina a linha de cache onde o bloco deve ser armazenado.

Offset: Indica a posição do byte dentro do bloco de dados.

O cache associativo por conjunto oferece um equilíbrio entre complexidade e flexibilidade.
Neste método, o cache, composto de m linhas, é dividido em vários conjuntos, cada um
contendo k linhas. Cada bloco de memória principal, Bloco j, pode ser mapeado em qualquer
uma das k linhas dentro de um conjunto específico. O conjunto é determinado por (j%(m/k)),
onde m/k representa o número total de conjuntos no cache. O número de linhas por conjunto,
k, é conhecido como associatividade do cache. Por exemplo, um cache associativo de 2 vias
(em inglês, 2-way associative) permite que cada bloco de memória principal, Bloco j, seja
armazenado em qualquer uma de duas linhas dentro do conjunto identificado, como ilustra a
figura. Esta abordagem reduz os conflitos que podem ocorrer no cache direto, pois um bloco
de memória principal tem mais opções de armazenamento, o que melhora a taxa de cache
hits.

O endereço de memória principal é dividido em três campos: [Tag | Conjunto | Offset]. Nesse
esquema:

● Tag: Identifica de forma única o bloco de dados específico na memória principal.
● Conjunto: Localiza o conjunto de cache onde o bloco pode estar armazenado.
● Offset: Especifica a posição do byte dentro do bloco de dados carregado na cache.

A localização de um bloco de memória principal dentro do conjunto de cache é feita através
da comparação da Tag de cada linha de cache do conjunto de cache com os bits mais
significativos do endereço de memória.

O cache totalmente associativo é o método mais flexível e complexo, permitindo que
qualquer bloco de memória principal seja armazenado em qualquer linha do cache. Não há
restrições quanto ao local onde um bloco pode ser colocado, o que minimiza os conflitos e
maximiza a taxa de cache hits. No entanto, essa flexibilidade vem com um custo maior em
termos de hardware e complexidade, pois o sistema precisa verificar todas as linhas do cache
para encontrar um bloco específico. Isso torna a implementação e o gerenciamento do cache
mais complexos e dispendiosos.

Devido às suas restrições de custo e complexidade, caches totalmente associativos são mais
comuns em sistemas de alto desempenho e processadores de servidores, onde o desempenho
e a flexibilidade são críticos e o custo de implementação mais complexo pode ser justificado.
Em microcontroladores, são mais comuns caches direto ou associativo por conjunto, que
oferecem um bom equilíbrio entre desempenho e custo, adequados para as necessidades
específicas e restrições desses dispositivos.

MEMÓRIA FORTEMENTE ACOPLADA (TCM)

A memória TCM (do inglês Tightly Coupled Memory) é uma forma de memória projetada
para operar extremamente próxima ao processador, oferecendo baixa latência e alta largura de
banda. Essa tecnologia é comumente implementada usando SRAM e se comunica com a CPU
de forma direta e paralela, sem intermediários como controladores de memória que poderiam
adicionar latência.

A principal motivação para a inclusão da TCM em microcontroladores é a necessidade de
acesso rápido e eficiente a dados e instruções críticos. Em aplicações que demandam alto
desempenho e baixa latência, como sistemas embarcados em tempo real, a TCM é utilizada
para armazenar partes do código e dados frequentemente acessados. A proximidade da TCM
ao núcleo do processador reduz significativamente o tempo de acesso à memória, melhorando
o desempenho geral do sistema. Isso é alcançado ao evitar a latência associada ao acesso a
memórias mais lentas e distantes, como a memória principal ou a memória externa. O
diagrama de blocos a seguir ilustra a conexão direta entre o processador e as memórias
SRAM e FLASH, que apresentam latências, via um controlador de TCM na arquitetura
Cortex-M7.

SISTEMA DE MEMÓRIA NO STM32H7A3

O seguinte texto extraído do Datasheet sumariza as unidades de memória internas e externas
suportadas pelo microcontrolador STM32H7A3.

https://www.dca.fee.unicamp.br/cursos/EA701/STM32/stm32h7a3zi.pdf#page=1

O microcontrolador STM32H7A3, que utiliza o processador Cortex-M7 da ARM, apresenta
um sistema de memória altamente otimizado para maximizar o desempenho em aplicações
complexas. A arquitetura do Cortex-M7, lançada pela ARM em 2014, é a primeira da série
Cortex-M a incluir cache de memória de um nível, marcando uma evolução significativa em
relação aos modelos anteriores. Esta arquitetura adota uma variante da arquitetura Harvard,
conhecida como Harvard modificada, que incorpora cache separado para instruções e dados.
Esse desenho de projeto melhora o desempenho ao reduzir conflitos e otimizar o acesso às
informações armazenadas, com cada tipo de cache especializado para o tipo de dado que
armazena.

O Manual de Cortex-M7 mostra que o cache de dados é configurado como um cache
associativo por conjunto de quatro vias, enquanto o cache de instruções é um cache
associativo por conjunto bidirecional. Ambos os caches utilizam linhas de 32 bytes, o que
permite que cada bloco de memória principal seja carregado em uma linha de cache. Quando
todas as linhas de cache em um conjunto estão ocupadas e um novo bloco precisa ser
carregado, o controlador de cache deve substituir uma linha existente para abrir espaço para o
novo bloco de dados ou instruções. Os dados e instruções armazenados no cache são
recuperados da memória externa através da interface AXI Master (AXIM), e os controladores
de cache utilizam SRAMs integradas ao processador para armazenar temporariamente essas
informações durante a operação.

O STM32H7A3 inclui a memória TCM. De acordo com o Manual do Cortex-M7, a
arquitetura ARMv7E-M suporta acesso direto a essa memória através da interface AHBS (do
inglês Advanced High-performance Bus Slave). Isso permite acesso quase instantâneo a
dados e instruções críticos. Para garantir a integridade dos dados no sistema de memória,
ajudando a detectar e prevenir erros de dados e aumentando a confiabilidade do sistema, o
microcontrolador é provido de uma unidade CRC (do inglês Cyclic Redundancy Check) que é
responsável por calcular e verificar o código CRC dos dados armazenados na memória.

No ambiente integrado de desenvolvimento STM32CubeIDE, o layout da memória e a
alocação de espaço para diferentes segmentos, como instruções e dados, são definidos por
meio de um script de link, como vimos no Roteiro 2. Esse script, com a extensão “.ld”,
determina como a memória é organizada e onde cada tipo de dado e código será armazenado.
No entanto, a pré-carga da memória TCM, bem como a configuração e ajuste dos caches de

https://www.dca.fee.unicamp.br/cursos/EA701/STM32/DDI0489B_cortex_m7_trm.pdf#page=95
https://www.dca.fee.unicamp.br/cursos/EA701/STM32/DDI0489B_cortex_m7_trm.pdf#page=2

instruções e dados, são realizadas no código-fonte do firmware do desenvolvedor. Isso
envolve a configuração dos registradores específicos do processador para ajustar os
parâmetros do sistema de memória conforme necessário.

O microcontrolador também oferece pinos para acesso a memórias externas, com modos de
operação que podem ser ajustados para otimizar o desempenho conforme as necessidades
específicas da aplicação. Entre esses modos, destacam-se o SRD (do inglês Single Read
Data) e o DTR (do inglês Dual Transfer Rate). No modo SRD, é possível transferir um dado
por ciclo de clock, adequado para operações básicas, enquanto o modo DTR permite a
transferência de dois dados por ciclo de relógio, oferecendo uma largura de banda
significativamente maior e melhorando a eficiência do sistema.

TIPOS DE DADOS EM C

No contexto da programação, a memória do computador é um grande bloco contíguo de
bytes, e esses bytes representam os dados que o software manipula. No entanto, a memória
bruta, composta apenas por bytes, não é diretamente compreensível ou útil em termos
práticos. Os tipos de dados fornecidos pelas linguagens de programação transformam esses
blocos de bytes em formas mais legíveis e úteis. Cada tipo de dado é uma maneira específica
de interpretar e organizar esses bytes, facilitando o acesso e a manipulação das informações.

Do ponto de vista computacional, os tipos básicos de dados processados pelo processador
são classificados em quatro categorias principais: números inteiros sem sinal, números
inteiros com sinal, números de ponto flutuante e caracteres alfanuméricos. Os caracteres
alfanuméricos incluem letras do alfabeto (tanto maiúsculas quanto minúsculas), os 10 dígitos
arábicos e uma variedade de caracteres especiais, como hífen, travessão, ponto e vírgula.
Existem várias abordagens para realizar essa conversão, e vamos explorar as mais comuns e
amplamente utilizadas nos sistemas computacionais modernos.

Números Naturais ou Números Inteiros sem Sinal: O sistema de numeração decimal,
amplamente conhecido, utiliza dez dígitos (0 a 9) e adota a notação posicional, onde o dígito
mais à direita tem o menor valor e cada posição vale 10 vezes mais do que a posição
imediatamente à direita. No entanto, este sistema não se adapta à natureza binária dos
computadores. Em contraste, o sistema binário, que usa apenas dois dígitos (0 e 1), é mais
adequado para a representação em computadores. Nesse sistema, cada dígito (ou bit) tem um
valor que é o dobro do dígito à sua direita, seguindo a notação posicional.

O sistema binário é empregado para codificar números naturais ou inteiros sem sinal. Com n
bits, é possível representar até 2n valores distintos, variando de 0 até 2n - 1. Dado que a menor
unidade de armazenamento na maioria dos computadores é um byte (8 bits), a representação
de números inteiros sem sinal geralmente é expressa em termos de bytes, podendo ser 1 byte,
2 bytes, 4 bytes ou 8 bytes, conforme a necessidade.

Para facilitar a manipulação e a leitura de grandes sequências binárias, os bits são
frequentemente agrupados em blocos que correspondem a potências de 2, como 4 bits
(nibble), 8 bits (byte), e 16 bits. Entre esses sistemas, a notação hexadecimal é
particularmente útil em sistemas embarcados. O sistema hexadecimal, com base 16, utiliza os
dígitos de 0 a 9 e as letras de A a F, que correspondem aos valores decimais de 10 a 15. Cada
dígito hexadecimal representa um nibble (4 bits), facilitando a conversão entre binário e
hexadecimal e tornando a interpretação dos dados mais eficiente.

Números Inteiros com Sinal: Números inteiros com sinal incluem tanto os números
positivos quanto os negativos. Para representar esses números em binário destacam-se quatro
diferentes formas.

A primeira delas é denominada representação de sinal e magnitude, em que um bit,
usualmente o bit mais significativo, é reservado para representar o sinal do valor. Por
convenção, 0 representa o sinal “+”, correspondendo a um número positivo, e 1 representa
“-”, o que corresponde a um número negativo. Esse bit é chamado de bit de sinal. Cabe
ressaltar que o restante da sequência de bits, tanto para um número positivo quanto para um
negativo, é usada para o código binário do módulo do valor.

A segunda representação é conhecida como complemento de um, em que todos os números
negativos são gerados a partir da sua contrapartida positiva, complementando bit a bit todos
os seus bits. Ou seja, troca-se os 0’s por 1’s, e vice-versa. Esta representação tem a
desvantagem de que há dois códigos binários associados ao número 0. Por exemplo, os dois
códigos binários 0000 e 1111 representam o valor zero para um conjunto de números
representado por 4 bits.

A terceira alternativa é a representação por complemento de 2, que resolve o problema da
representação em complemento de 1 e que também facilita a realização de operações
aritméticas sobre os números inteiros. A notação de complemento de 2 de um número
negativo é obtida ao somar 1 à sua representação em complemento de 1. Com n bits nesta
notação, pode-se representar os valores de −2n−1 até 2n−1 − 1. O número 0 possui
representação única e o bit mais significativo é o bit de sinal. É adotada a mesma convenção

das outras duas representações para interpretar o bit de sinal: se 0, então o número é positivo,
senão o número é negativo. O interessante é que se quiser converter um número negativo em
complemento de 2 para a sua contrapartida positiva, também em complemento de 2, basta
complementar bit a bit o número e somar 1 ao resultado. Um problema observado nesta
representação é a ordenação dos números pelos seus códigos binários, pois uma simples
comparação de bits pode levar a conclusões erradas se não forem considerados o bit de sinal e
os valores absolutos dos números.

A quarta representação é a representação de excesso-N. Esta representação usa o valor N
como um valor de deslocamento (polarização), de forma que o código binário de N
corresponde ao número 0 e o código binário com todos os bits zerados corresponde a −N.
Desta forma, pode-se ordenar os números negativos e positivos comparando diretamente os
seus códigos binários. Por exemplo, para o valor em decimal 35, a sua representação em
excesso-128 é 35+128 = 163.

Pontos flutuantes: É importante notar que a quantidade distinta de valores que um conjunto
de n bits pode representar de forma única é limitada a 2n. No entanto, para representar uma
gama infinita de valores dentro de um intervalo real, utilizamos a representação em ponto
flutuante. De acordo com o padrão IEEE 754, um número em ponto flutuante é descrito em
notação científica por três componentes principais: sinal, expoente e mantissa.

O campo de sinal ocupa um bit e determina se o número é positivo ou negativo, similar às
representações de números inteiros com sinal. Os campos de expoente e mantissa variam
conforme a precisão da representação. O padrão IEEE 754 define dois formatos principais:
precisão simples (32 bits ou 4 bytes) e precisão dupla (64 bits ou 8 bytes). Na precisão
simples, o expoente é representado por 8 bits e a mantissa por 23 bits; na precisão dupla, o
expoente é representado por 11 bits e a mantissa por 52 bits.

Na representação IEEE 754, os valores são organizados em intervalos que se estendem ao
longo da reta numérica real. A quantidade de bits alocados para a mantissa determina a
precisão dentro de cada intervalo, ou seja, quantos valores distintos podem ser representados
dentro de um intervalo específico. Por outro lado, a quantidade de bits destinados ao expoente
define quantos desses intervalos estão disponíveis ao longo da reta real, com os valores do
expoente determinando a escala e a separação entre os intervalos. À medida que o valor do
expoente aumenta, a distância entre os intervalos também aumenta exponencialmente,
mantendo simetria em relação ao zero na reta real.

O termo “ponto flutuante” se refere à capacidade de ajustar a posição da vírgula decimal,
através do expoente, permitindo a acomodação de números em diferentes ordens de
magnitude. Assim, a vírgula “flutua” para se ajustar ao tamanho do número, facilitando a
representação de uma ampla gama de valores com diferentes magnitudes. Essa flexibilidade
na posição do ponto decimal facilita a representação precisa de números muito grandes e

muito pequenos, como ilustrado na figura com os números representáveis ao longo da reta
real.

A representação de caracteres alfanuméricos se refere à maneira como letras do alfabeto
(maiúsculas e minúsculas), números e alguns caracteres especiais são codificados em
sistemas computacionais. Normalmente, isso é feito atribuindo a cada caractere um código
numérico único, que é armazenado e processado em forma binária (sequência de 0s e 1s). Os
sistemas de codificação mais comuns para caracteres alfanuméricos incluem o código ASCII
(American Standard Code for Information Interchange), o ASCII estendido ou EBCDIC
(sigla de Extended Binary Coded Decimal Interchange Code) e o Unicode (sigla de Universal
Coded Character Set). No código ASCII, por exemplo, cada caractere é representado por um
número inteiro de 7 ou 8 bits, permitindo a representação de 128 ou 256 caracteres diferentes,
respectivamente. A tabela abaixo sintetiza os 128 códigos ASCII dos caracteres de controle e
caracteres alfanuméricos representados em 7 bits. O código ASCII estendido expande essa
codificação, reservando valores adicionais dentro do intervalo de 8 bits (geralmente de 0 a
255) para representar caracteres adicionais, símbolos especiais, caracteres acentuados, letras
acentuadas usadas em várias línguas e outros caracteres que não estão presentes no conjunto
ASCII original de 128 caracteres. Entre as diversas variantes do código ASCII estendido está
o código o Latin-1 (ISO 8859-1), amplamente usado para línguas européias. O código
Unicode é mais abrangente e permite a representação de um conjunto muito maior de
caracteres de várias línguas e símbolos do mundo todo, usando codificações de 8, 16 ou 32
bits.

https://docs.oracle.com/cd/E19957-01/806-3568/ncg_math.html

Em C, a representação de valores numéricos e caracteres alfa-numéricos está diretamente
vinculada aos tipos de dados, influenciando o tamanho da memória necessária, enquanto os
qualificadores de tipo determinam o intervalo de valores e a representação dos dados. E a
alocação da memória e a duração da sua alocação são mais diretamente afetadas pelo escopo
da variável (local, global, estática) e pelo método de alocação (pilha, heap, alocação estática).

Tipos de dados numéricos como “int”, com seus qualificadores “signed”, “unsigned”, “short”
e “long”, assim como “float” e “double”, são utilizados para armazenar valores inteiros e de
ponto flutuante. Cada tipo possui uma representação binária específica que define seu
tamanho e precisão na memória, sendo a representação de números inteiros com sinal
geralmente feita por meio do complemento de dois. Por outro lado, caracteres alfa-numéricos
são representados pelo tipo “char”, que armazena caracteres individuais usando códigos
ASCII ou Unicode, convertendo letras e números em valores inteiros manipuláveis. A
conversão entre números e caracteres é facilitada por funções de biblioteca e operadores,
permitindo a transformação de dados entre diferentes formatos. A escolha do tipo de dado em
C não só determina o formato de armazenamento e manipulação dos valores, mas também
impacta como os dados são interpretados e utilizados pelo programa.

Além disso, a relação entre variáveis e memória em C é determinada pelo escopo e pela vida
útil das variáveis. Variáveis locais são alocadas na pilha (stack) e têm escopo e vida útil
restritos ao bloco de código da função em que são declaradas, como discutido no Roteiro 3.
Variáveis globais e estáticas, por sua vez, são armazenadas no segmento de dados (“data”),
se inicializadas, ou no segmento de não inicializados (“bss”), se não inicializadas,

proporcionando um escopo global e uma vida útil que se estende por toda a execução do
programa. Já as variáveis alocadas dinamicamente, criadas com “malloc()” e “calloc()”, são
armazenadas na memória heap e permanecem alocadas até serem explicitamente liberadas
com “free()”, independentemente do escopo das funções que as criaram. Em contraste, as
variáveis de alocação estática têm sua alocação definida no tempo de compilação. Além
disso, constantes e literais em C são armazenados no segmento de dados somente leitura
(“Rodata”), que é geralmente alocado junto com as instruções do programa. Esse segmento é
projetado para conter dados que não são modificados durante a execução, garantindo a
integridade e a proteção dessas informações.

A figura abaixo sumariza a relação entre os tipos de dados declarados em C e a sua alocação
nos diferentes segmentos de memória.

Por fim, é uma estratégia comum em programação de baixo nível, especialmente em
desenvolvimento de sistemas embarcados, mapear nomes mais legíveis aos endereços dos
registradores usando o tipo de dado “struct”:

1. Definição de Estrutura: Define-se uma “struct” que mapeia cada registrador para um
membro da estrutura. Cada membro da “struct” representa um registrador específico e
é associado a um endereço de memória fixo que o fabricante definiu para esse
registrador.

2. Respeito aos Intervalos de Endereços: O fabricante do microcontrolador ou
processador especifica os endereços de memória que cada registrador ocupa. Esses
endereços são geralmente documentados no datasheet do componente. Na definição
da “struct”, esses endereços são usados para inicializar os ponteiros ou offsets dos
campos da “struct”, garantindo que cada membro acesse o registrador correto.

3. Acesso aos Registradores: Com a “struct” definida e mapeada no endereço inicial do
bloco de registradores de um periférico/módulo, os registradores podem ser acessados
usando nomes de membros legíveis em vez de endereços de memória brutos. Isso
facilita a leitura e a escrita dos registradores, além de tornar o código mais legível e
manutenível.

Os tipos básicos de dados são diretamente mapeados para a memória como blocos de bytes.
Por exemplo, um tipo “int” pode ocupar 4 bytes, enquanto um “char” pode ocupar 1 byte. Os

https://www.geeksforgeeks.org/difference-between-malloc-and-calloc-with-examples/
https://www.geeksforgeeks.org/dynamic-memory-allocation-in-c-using-malloc-calloc-free-https://www.geeksforgeeks.org/dynamic-memory-allocation-in-c-using-malloc-calloc-free-and-realloc/and-realloc/
https://wahyu-ehs.medium.com/c-memory-division-text-code-segment-data-and-bss-ef7d76831d8b

tipos derivados de dados são, por sua vez, construídos a partir dos tipos básicos e permitem
representar dados de formas mais complexas e estruturadas. Estes incluem:

● Vetor (Array): Um vetor é uma coleção de elementos do mesmo tipo armazenados
sequencialmente em blocos contíguos de memória. Por exemplo, um vetor de tipo
float mapeia um bloco contíguoo de memória onde cada float ocupa um espaço fixo.
Quando acessamos um elemento do vetor, estamos acessando uma parte específica
desse bloco de bytes, calculando o deslocamento (offset) com relação ao
endereço-base do vetor, ou seja o endereço do elemento de índice 0.

● Matriz: Uma matriz é uma extensão do vetor para mais de uma dimensão. Quando
mapeada na memória, uma matriz é armazenada como um bloco contíguo de bytes,
mas é interpretada de forma a representar linhas e colunas. Cada elemento da matriz é
acessado com base em uma fórmula que considera a sua posição em ambas as
dimensões. Isso permite que o mesmo bloco de memória seja visualizado e acessado
como uma estrutura bidimensional, ao invés de apenas uma sequência linear, como
ilustra a figura.

https://eli.thegreenplace.net/2015/memory-layout-of-multi-dimensional-arrays

● Estrutura (“struct”): Uma estrutura é uma combinação de diferentes tipos básicos e
derivados, agrupados em uma única unidade. Por exemplo, uma estrutura pode conter
um “int”, um “char”, e um “float”. Na memória, os campos da estrutura são
organizados sequencialmente e podem haver inserções de padding para garantir
alinhamento, como ilustra a figura.

● União (“union”): Uma união é um tipo de dado que pode armazenar diferentes tipos
de dados na mesma área de memória, mas apenas um tipo de cada vez. Isso significa
que, embora uma união possa conter vários membros de diferentes tipos, todos
compartilham o mesmo bloco de memória. O tamanho total de uma união é
determinado pelo tamanho do maior membro, garantindo que haja espaço suficiente
para armazenar qualquer um dos tipos que ela pode conter, como mostra a figura.
Assim, a união oferece a flexibilidade de acessar o mesmo bloco de memória de
diferentes formas, dependendo do tipo de dado em uso no momento.

https://research.nccgroup.com/2019/10/30/padding-the-struct-how-a-compiler-optimization-can-disclose-stack-memory/
https://www.cs.emory.edu/~cheung/Courses/255/Syllabus/2-C-adv-data/union.html

A habilidade de mapear um bloco de bytes em diferentes tipos de dados nos permite adaptar
a nossa representação e processamento dos dados conforme as necessidades específicas do
nosso programa. Isso não só facilita a programação, mas também melhora a eficiência ao
utilizar a memória de maneira mais eficaz. Por exemplo, em um contexto onde precisamos
processar dados sequenciais, um vetor pode ser a melhor escolha. Em outro contexto, onde os
dados são melhor representados em uma forma tabular ou matricial, uma matriz pode ser
mais adequada. Em ambos os casos, estamos acessando o mesmo bloco de bytes na memória,
mas o tipo de dado utilizado altera a maneira como interpretamos e manipulamos esses bytes.

A regra básica de padding adotada pelos compiladores C visa garantir o alinhamento
adequado dos diferentes tipos de dados, como ilustra a alocação do bytes alocados para os
membros de uma “struct” na figura a seguir. Para o tipo “char”, os endereços são alinhados
por byte. Já para o tipo “unit16_t” (“short” nos processadores de 32 bits), os endereços são
alinhados em endereços pares. No caso dos tipos “uint32_t” (“int” nos processadores de 32
bits) e “float”, o alinhamento ocorre em endereços múltiplos de 4 bytes. Por fim, para o tipo
“uint64_t” (“double” nos processadores de 32 bits), os endereços são alinhados em múltiplos
de 8 bytes. O tamanho total do bloco de memória alocado deve ser sempre múltiplo de 4 em
um processador de 32 bits.

https://ncmiller.dev/memory-alignment.html

