
Universidade Estadual de Campinas - UNICAMP

Faculdade de Engenharia Elétrica e de Computação - FEEC

Departamento de Engenharia de Computação e Automação Industrial - DCA

- TUTORIAL -

Altera Quartusr II e

Kit de Desenvolvimento DE1

Versão 2.1

Campinas, 30 de julho de 2010

Notas da Versão

Versão 2.1: Uma atualização da versão anterior, do primeiro semestre de 2010. Foram inclúı-

das a seção sobre FPGA e sobre a visualização gráfica de netlist. Foi também revisada

a seção de analisador de tempos.

Versão 2.0: Reescrita do texto originalmente proposto no segundo semestre de 2009. Am-

pliação do conteúdo e adequação das figuras referentes ao ambiente de desenvolvimento

Quartusr II para a versão 9.11

Licença de Uso

Este tutorial tem objetivo puramente educativo, sem nenhuma finalidade lucrativa. Sua cópia

para finalidades educacionais e pessoais, total ou parcial, é totalmente permitida pelos autores.

1Na data de publicação deste manual, é disponibilizado em (Altera, 2010f) uma versão já com o pacote de
atualizações SP2.

1

Prefácio da Versão 2.1

As dúvidas levantadas pelos alunos da disciplina de EA773 – Laboratório de Circuitos

Lógicos, ao longo do primeiro semestre de 2010, nos motivaram a inserir uma seção sobre a

visualização gráfica do resultado sintetizado pelo aplicativo Quartusr II, fazer uma brev́ıs-

sima introdução aos dispositivos FPGAs e revisar a seção sobre os tempos gerados pelo seu

analisador temporal clássico.

Agradecemos a todos os nossos alunos que contribúıram, direta e indiretamente, à melho-

ria do conteúdo deste breve tutorial e esperamos que ele facilite os novos usuários de Quartusr

II a explorar toda a sua potencialidade. Continuamos abertos a todas as cŕıticas construtivas

para aprimorar este material.

Bom proveito!

Prof. Dra. Wu Shin - Ting

ting AT dca DOT fee DOT unicamp DOT br

30 de julho de 2010

2

Prefácio da Versão 2.0

O ińıcio deste texto deu-se a partir da Versão Beta 1.0 a qual foi desenvolvida no segundo

semestre de 2009 pelo monitor da disciplina Lucas Martins Guido. Assim sendo, esse texto foi

inicialmente pensado para ser a Versão 1.1. Contudo, devido ao grande número de correções,

sugestões e adequações para a versão 9.1 do Quartusr II, achamos melhor classificar essa

nova versão do tutorial como 2.0.

A prinćıpio, partimos da organização do texto apresentado anteriormente na Versão

Beta 1.0. Entretanto, pensamos em suplantar algumas partes do texto, explorar melhor alguns

exemplos apresentados anteriormente e, além disso, apresentar as referências principais para

aqueles que utilizarão esse ambiente de desenvolvimento pela primeira vez. Como consequência,

a estruturação inicial do texto, proposta anteriormente, teve que ser alterada para adequar-se

às modificações realizadas.

Esse breve tutorial foi pensado para os alunos da disciplina EA773 – Laboratório de

Circuitos Lógicos os quais utilizarão, ao longo do curso, a placa de desenvolvimento da Terasic

Technologies, a Development and Education Board – DE1. Gostaŕıamos de ressaltar que existe

um excelente manual na página do fabricante (Altera e Terasic, 2010) o qual sugerimos forte-

mente que seja utilizado como fonte principal de informações sobre a placa DE1, onde todos

os módulos funcionais da placa são apresentados em grande detalhe.

A seção das principais perguntas apresentadas pelos alunos em semestres anteriores foi

mantida a menos de modificações no texto para melhor compreensão. Provavelmente no final

do semestre, novas informações venham a ser inseridas.

Aos mais experientes, fica a sugestão para aprofundar-se a partir do estudo da página do

fabricante do Quartusr II, onde é posśıvel encontrar muita informação, muito mais detalhadas

do que é apresentado aqui.

Agradecemos a todos os nossos alunos que contribúıram com suas perguntas, observações,

e soluções criativas ao longo dos cursos que lecionamos. Estamos sempre abertos para cŕıticas

construtivas a fim de melhorar o material apresentado.

E, por fim, esperamos que este breve tutorial te ajude a entrar ao fantástico mundo de

Projetos Digitais.

Prof. Dra. Wu Shin - Ting

ting AT dca DOT fee DOT unicamp DOT br

Filipe Ieda Fazanaro

filipe DOT fazanaro AT gmail DOT com

11 de maio de 2010

3

Prefácio da Versão 1.0

Esse tutorial foi criado para finalidades educacionais, inicialmente com o objetivo de auxiliar os

alunos de EA773-Laboratório de Circuitos Lógicos, na UNICAMP. O software Quartus II que

utilizei para a obtenção das imagens contidas neste tutorial é a versão Web Edition que não

requer licença.

Escrevi na forma de um passo-a-passo, que começa desde o download do software e abrange a

prototipagem do sistema digital, simulação em software e dicas rápidas. Não me preocupei em

usar uma linguagem rebuscada e procurei durante o texto todo colocar a informação de uma

forma agradável.

No final desse tutorial você encontrar um FAQ com as perguntas mais frequentes durante as

monitorias. Possivelmente suas dúvidas futuras podem aparecer lá.

Meu objetivo é transmitir aos colegas um pouco da experiência que adquiri em alguns semestres

lidando com essa placa e software. Dicas para melhorar esse material são muito bem-vindas.

Agradeço a todos que colaboraram para a criação deste tutorial, contribuindo com dúvidas,

incentivo e apoio. Espero que ajude.

Abraços,

Lucas Martins Guido

06 de setembro de 2009

4

Sumário

1 Introdução 7

2 Começando com Alguns Conceitos 7

2.1 Projeto . 7

2.2 Metodologia de Projeto Hierárquico . 8

2.3 Nı́vel de Abstração de um Sistema Digital . 9

2.4 FPGAs . 10

2.5 VHDL . 11

3 Instalando o Quartusr II 12

4 Modelando Um Projeto 15

4.1 Modelo Comportamental . 15

4.2 Modelo Estrutural . 16

5 Criando um Projeto no Quartusr II 17

6 Criando Arquivos de Projeto 19

7 Capturando o Esquemático 20

7.1 Inserção de Componentes . 21

7.2 Ligação entre Componentes . 21

7.3 Nomeação dos Pinos de Entrada e de Sáıda . 23

7.4 Nomeação das Linhas das Ligações . 24

8 Descrevendo em VHDL 25

9 Encapsulando os Componentes 27

10 Compilando 29

11 Visualizando os Resultados da Compilação 31

12 Analisando as Restrições de Tempos do Projeto 33

5

13 Simulando 34

14 Carregando o Projeto 39

15 FAQs 41

15.1 Por que a onda de sáıda está deslocada para a direita em relação às entradas . . 41

15.2 O que são esses picos que ocorrem, às vezes, nas transições? 42

15.3 Como aumento o tempo máximo nas simulações? 42

15.4 Não compila e aparece que o problema é a hierarquia. 42

15.5 O nome do meu projeto é Projetão da Moçada e não compila. Por quê? 42

15.6 Tenho 200 entradas que ficam em 1 sempre, mais 200 que sempre ficam em

0. Quando coloco no Waveform fica uma bagunça. Já que eu não tenho que

mudá-las sempre, tem algo mais prático a ser feito? 43

15.7 Fui no TTL HandBook e justamente a página que eu queria não estava lá. O

que faço? . 43

15.8 Sumiram as ferramentas do Waveform. 43

15.9 No simulador, os pinos não aparecem. 43

15.10Simulei anteriormente, inseri e tirei alguns pinos, quero simular novamente. Com-

pilo e quando abro o simulador só tenho pinos antigos. Que fazer? 43

15.11Sumiram as ferramentas da área de trabalho. 43

15.12Estou na tela de associação de pinos com endereços, para gravação. O problema

é que minha tela não mostra, na parte de baixo, os pinos do meu projeto. 44

15.13Estou na tela de associação de pinos com endereços, para gravação. O problema

é que minha tela não mostra, ao lado dos pinos do meu projeto, a coluna Location. 44

15.14Estou na tela de gravação mas não consigo gravar. 44

15.15Usei o clock da placa e todos os meus LEDs ficam acesos. 44

15.16Por que ao renomear um pino de entrada com o nome CLOCK 27, o sistema não

o associa ao pino do relógio de 27 MHz do kit? 44

6

1 Introdução

Esse tutorial foi elaborado com o objetivo de auxiliar os alunos do curso EA773 – Labo-

ratório de Circuitos Lógicos da Faculdade de Engenharia Elétrica e de Computação (FEEC),

UNICAMP, os quais, pelo menos em sua maioria, terão contato pela primeira vez com o am-

biente Quartusr II, da Altera (Altera, 2010a) bem como com a placa de desenvolvimento

DE1 (Altera e Terasic, 2010) a qual é disponibilizada aos alunos durante o curso. Para aqueles

que já tiveram a oportunidade de utilizar tanto o software quanto a placa (ou que já trabalham

com outros dispositivos lógicos programáveis da Altera) e queiram se aprofundar sobre as suas

possibilidades, sugere-se que as referências (Altera, 2010a; Altera, 2010f) sejam utilizadas como

fonte de informação.

Durante o 2o semestre de 2010, o curso tem como base os roteiros experimentais propostos

no seguinte endereço eletrônico:

http://www.dca.fee.unicamp.br/courses/EA773/2s2010/index.html

Em primeiro lugar, apresentamos alguns conceitos úteis relacionados com o ambiente

de desenvolvimento Quartusr II. Em seguida, serão apresentados os principais passos que

um aluno pode seguir para criar um projeto nesse ambiente de desenvolvimento, desde a sua

instalação, passando pelos procedimentos de configuração, criação de um ambiente de projeto,

criação dos arquivos de projeto, utilizando tanto esquemático quanto linguagens de descrição

de hardware, tais como VHDL, compilação, simulação, e análise do desempenho temporal. E,

finalmente, são dados os passos necessários para programar um chip FPGA dispońıvel no kit

DE1. Todos esses passos são exemplificados a partir de um projeto de máquina de 4 estados.

2 Começando com Alguns Conceitos

Nesta seção é apresentada uma breve introdução aos termos relacionados com o desen-

volvimento de um projeto digital.

2.1 Projeto

Tanto no Quartusr II como em diversos aplicativos de desenvolvimento de circuitos

digitais configuráveis, todos os dados referentes ao circuito devem estar contidos em um projeto.

Um projeto é uma espécie de “ambiente” em que é posśıvel desenhar um circuito lógico digital,

executar compilações, simulações, analisar sinais em tempo de execução (Altera, 2010c) etc.

Um projeto inclui o nome do projeto, a pasta, o nome da entidade no topo do ńıvel hierárquico

corrente e o dispositivo onde o projeto será carregado. Arquivos que não estejam relacionados

ao projeto não serão levados em conta na compilação e muito menos durante a simulação.

7

Muitos erros ocorrem devido ao descaso com os arquivos do projeto, que devem estar juntos

em uma mesma pasta. Com isso em mente e para evitar problemas, vale o seguinte lema:

UM projeto, UMA pasta.

O primeiro passo para começar um projeto no Quartusr II consiste em criar uma

pasta para colocar os respectivos arquivos. Faça isso como de costume, escolha um local (que

pode ser um pendrive, mesmo não sendo aconselhável) no computador e crie uma pasta vazia.

Um detalhe bastante importante consiste no fato de que o nome da pasta não pode conter

espaços. Por essa razão, “Projeto 01” não é um nome válido e, ao invés disso, deve-se optar,

por exemplo, por “Projeto.01” ou por “Projeto_01”.

2.2 Metodologia de Projeto Hierárquico

Metodologia de projeto hierárquico consiste essencialmente em dividir projetos em uma

estrutura hierárquica de entidades de projeto. Cada uma das entidades possui uma função

espećıfica e uma interface de iteração com outras entidades. Assim, um projeto pode ser

visto através de diferentes ńıveis de hierarquia, desde os blocos lógicos elementares até a visão

geral no topo da hierarquia. Quando o fluxo de desenvolvimento de um projeto parte dos

blocos elementares e, então, integrá-los em entidades de ńıvel mais alto, é dito que se trata da

metodologia bottom-up. E quando o fluxo de projeto ocorre no sentido inverso, saindo de um

ńıvel de concepção geral e vai se detalhando até chegar a um ńıvel realizável com a tecnologia

dispońıvel, a metodologia é conhecida como top-down.

No ambiente Quartusr II é posśıvel adotar a metodologia bottom-up, top-down, ou

a combinação das duas para desenvolver um projeto. Neste curso será usada a metodologia

bottom-up que impõe a seguinte estrutura: diversas entidades auxiliares que devem ser agregadas

para constituir uma entidade de projeto principal. Essas entidades são colocadas em uma espécie

de árvore, o que forma uma hierarquia. Não respeitar essa hierarquia de entidades resulta em

erros durante a compilação do projeto, pois a compilação é executada de forma ascendente, ou

seja, a entidade no topo será o último lido no processo de compilação. Pode-se ilustrar estes

conceitos com um exemplo.

Imagine que se tenha como objetivo criar um relógio digital com despertador, isto é,

quando o horário for igual ao horário selecionado o relógio despertará. Supõe-se ainda que exista

uma lista de componentes e ferramentas que poderão ser utilizadas, entre as quais figuram um

relógio digital e um comparador. Pode-se então construir a partir do relógio e do comparador

um despertador, conforme mostra a Figura 1. A entidade “Relógio COM Despertador” é o topo

da hierarquia de projeto.

Diversas vantagens podem ser destacadas quando se emprega a metodologia hierárquica

no desenvolvimento de um projeto. Uma delas é que o desenvolvimento do projeto pode ser

8

C
O

M
P

IL
A

Ç
Ã

O
Comparador Relógio

Relógio COM

despertador

Figura 1: Hierarquia de entidades de projeto.

realizado por partes, ou seja, cada entidade de projeto é compilado, analisado, simulado e

testado separadamente. Assim, garante-se que o seu funcionamento esteja de acordo com as

especificações do projeto e, eventualmente, erros, modificações e otimizações tornam-se tarefas

mais simples de serem executadas. Adicionalmente, ao se analisar o projeto como um todo, fica

mais simples procurar por eventuais erros que venham a ocorrer e, consequentemente, facilita

o trabalho para a sua correção já que os módulos foram testados previamente. Na Seção 9 são

discutidos os principais procedimentos para que uma ou mais entidades desenvolvidas em um

projeto A sejam empregados em um outro projeto B e/ou C.

2.3 Nı́vel de Abstração de um Sistema Digital

Um projeto em circuitos digitais pode ser analisado a partir de diferentes ńıveis de

abstração, como é ilustrado na Figura 2 (adaptado a partir de (der Spiegel, 2010)) facilitando,

assim, a descrição e o desenvolvimento do projeto, independentemente de sua complexidade.

S <= A + B

Comportamental

Algoritmico

Fluxo de dados

Estrutural

Componentes

Interconexões

F́ısico

Implementação

Figura 2: Nı́veis de abstração de um projeto digital.

O mais alto ńıvel de abstração é o comportamental onde se descreve o circuito em

9

termos do que ele faz, o que ele implementa e como ele se comporta. Em outras palavras, a

descrição comportamental mostra a relação entre os sinais de entrada e os de sáıda tal como

uma tabela-verdade, ou a relação entre os estados por meio de uma tabela de transições ou um

diagrama de estados. Já no ńıvel estrutural tem-se a descrição do sistema em termos dos com-

ponentes lógicos (tais como portas lógicas, registradores e flip-flops) interconectados, ou seja, as

estruturas lógicas que realizam as funções especificadas nos requisitos do projeto. Finalmente,

no ńıvel f́ısico ocupa-se com a tecnologia onde o projeto será implementado. Esta tecnlogia

pode variar desde os componentes lógicos de função fixa, como os circuitos integrados da famı́lia

lógica TTL ou CMOS, até os dispositivos lógicos “programáveis” (PLDs – Programmable Logic

Devices) de alta densidade.

2.4 FPGAs

Diferentemente dos circuitos integrados da famı́lia lógica TTL ou CMOS, que tem as

suas funções lógicas definidas no ato de fabricação, as matrizes de portas programáveis em

campo, mais conhecidos como FPGAs – Field Programmable Gate Arrays, caracterizam-se

por apresentarem as suas funcionalidades configuradas exclusivamente pelos usuários. Esta

classe de dispositivos lógicos foi inventada por Ross Freeman, um dos fundadores de Xilinx Inc.

em 1984, e teve o seu lançamento no ano de 1985.

Distinguem-se num FPGA três módulos: blocos de entrada e sáıda, blocos lógicos con-

figuráveis, e uma matriz de chaves de interconexão. Os blocos lógicos são dispostos de forma

bidimensional, as chaves de interconexão são dispostas em formas de trilhas verticais e hori-

zontais entre as linhas e as colunas dos blocos lógicos, e os blocos de entrada e de sáıda são

dispostos na borda do chip. Tipicamente, os blocos lógicos compreendem alguns flip-flops e

lógicas combinacionais, e as interconexões entre eles podem ser configuradas por meio de um

arquivo binário, conhecido genericamente como bitstream. Vale observar que para a maioria

dos FPGAs este arquivo precisa ser recarregado após cada corte de energia.

Para facilitar a configuração de um dispositivo lógico programável, existem aplicativos

vendidos por terceiros capazes de converter as descrições de um projeto em alto ńıvel numa

malha de blocos lógicos conectados, também conhecida como netlist, e transformar esta malha

num“layout” incluindo blocos lógicos, blocos de entrada e de sáıda e caminhos de interconexões

existentes nesses dispositivos lógicos. Tais aplicativos são conhecidos como compiladores

lógicos.

10

2.5 VHDL

A Linguagem de Descrição de HardwareVHDL2 foi desenvolvida em meados da década

de 1980 pelo Departamento de Defesa dos Estados Unidos como uma forma concisa de do-

cumentar os projetos desenvolvidos sobre circuitos integrados de alta velocidade (VHSIC) e,

posteriormente, padronizada pelo IEEE (IEEE-VHDL, 2009). Com o desenvolvimento de com-

ponentes eletrônicos reconfiguráveis para construir circuitos digitais, tais como os FPGAs, o

padrão VHDL se transformou em uma das principais linguagens de descrição de hardware de

alto ńıvel para projetar e implementar circuitos digitais (Tocci, Widmer e Moss, 2008).

O VHDL permite, então, que o sistema digital seja descrito tanto em ńıvel estrutural

quanto em ńıvel comportamental, focando no percurso dos dados ao longo do fluxo de dados

e como eles são tratados (sequencialmente ou concorrentemente) (IEEE-VHDL, 2009;

Pedroni, 2008; Perry, 2002; der Spiegel, 2010; Tocci et al., 2008).

Assim como qualquer linguagem de especificação, o VHDL obedece alguns padrões de

estruturação. Deve-se atentar ao fato de que o VHDL, como o próprio nome diz, é uma lingua-

gem de descrição de hardware e, portanto, deve-se ter em mente que o código irá descrever um

circuito digital, o seu comportamento, a maneira pela qual serão tratados os sinais envolvidos.

No Código 1 é apresentado um exemplo da descrição de um semi somador de dois bits xi e yi

em VHDL, cujo resultado de soma e de transporte é, respectivamente

pi = xi ⊕ yi

gi = xi ∧ yiq0
(1)

Basicamente, um circuito descrito a partir do padrão VHDL é composto de três partes.

Na primeira parte, no cabeçalho, definem-se as bibliotecas que serão empregadas no circuito

do semi somador descrito pelo Código 1. Na segunda parte define-se a entidade (Entity)

que representa o circuito. Nesse ponto, são definidas todas as portas de entrada e de sáıda

e, também, os tipos de sinais que serão empregados. Por exemplo, pode-se definir que uma

determinada entrada da entidade receba bits de sinais. A sutileza ao definir, por exemplo, uma

entrada como binária consiste no fato de que a variável somente aceitará ńıveis lógicos ALTO

(’1’) ou BAIXO (’0’). Já ao se definir como sinal lógico (como explicitado no Código 1), as

variáveis podem receber, além de ’1’ e ’0’, sinais indeterminados (don’t care).

Finalmente, na terceira parte do código, define-se a arquitetura do circuito, ou seja, o seu

funcionamento propriamente dito. As funções xor e and são definidas a partir das bibliotecas

inclúıdas na primeira parte, logo no ińıcio do código (IEEE-VHDL, 2009).

É importante salientar que não é objetivo deste tutorial realizar estudos aprofundados

2Abreviação do termo, em inglês, Very High Speed Integrated Circuit (VHSIC) Hardware Description

Language (HDL).

11

1 library ieee;

2 use ieee.std_logic_1164.all;

3 use ieee.numeric_std.all;

4

5 entity semi_somador is

6 port

7 (

8 xi : in std_logic;

9 yi : in std_logic;

10 pi : out std_logic;

11 gi : out std_logic

12);

13 end semi_somador;

14

15 architecture behavior of semi_somador is

16 begin

17 pi <= xi xor yi;

18 gi <= xi and yi;

19

20 end behavior;

Código 1: Descrição de um semi-somador em VHDL.

quanto ao padrão VHDL. Para isso, recomenda-se o estudo atento de livros especializados sobre

o assunto tais como o de Pedroni (2008) e o de Perry (2002), o material apresentado em (der

Spiegel, 2010) e, principalmente, pela documentação referente à padronização disponibilizada

em (IEEE-VHDL, 2009).

3 Instalando o Quartusr II

A Altera disponibiliza uma versão gratuita do Quartusr II, denominada de Web Edi-

tion em seu site, sem que haja a necessidade de aquisição de uma licença comercial3. Basta

fazer o download e instalar no seu computador. Atualmente o endereço para o download é:

https://www.altera.com/support/software/download/altera_design/quartus_we/

dnl-quartus_we.jsp

3Existem algumas diferenças entre a versão gratuita e a versão comercial. Basicamente, essa diferença con-
siste no tipo de licença a qual libera ou não determinadas funcionalidades do software. Para maiores informa-
ções, deve-se analisar o seguinte endereço eletrônico: http://www.altera.com/products/software/products/
quartus2web/features/sof-quarweb_features.html.

12

O arquivo de instalação da versão 9.1 do Quartusr II possui um tamanho aproximado

de 1.95 GB4 e já vem com os pacotes de atualizações (quando existentes) embutidos5. Con-

tudo, ao selecionar todos os pacotes dispońıveis, após finalizado o procedimento de instalação,

o Quartusr II chega a ocupar mais de 4.1 GB. Existem alguns detalhes que podem econo-

mizar um espaço no HD sem prejudicar as funcionalidades necessárias para o andamento do

curso. Para isso, logo no ińıcio da instalação, deve-se escolher a opção Custom, como pode ser

observado na Figura 3(a):

(a) Seleção do modo de instalação.

(b) Seleção dos pacotes a serem instalados.

Figura 3: Primeiras janelas do programa de instalação do Quartusr II.

Em seguida, tem-se a possibilidade de escolher quais pacotes podem ser instalados como

mostra a Figura 3(b). No caso de omissão por parte do usuário, o software de instalação

habilita os pacotes para todas as famı́lias de FPGAs disponibilizados pela Altera. Como o

FPGA do kit de desenvolvimento dispońıvel aos alunos do curso EA773 é um Dispositivo Lógico

Programável (Programmable Logic Device - PLD) da famı́lia Cyclone II (Altera, 2010b), não é

4Esse é o arquivo de instalação para o Windows. Existe uma versão beta para Linux mas o procedimento
de instalação é diferente e não será tratado neste tutorial. Um novo tutorial está em fase de desenvolvimento o
qual abrangerá os principais pontos para sistemas operacionais Linux.

5Na data deste tutorial, a versão para download vem incorporado o pacote de atualizações SP2.

13

necessário instalar todos os pacotes e, dessa maneira, alguns podem ser desabilitados sem perda

de funcionalidade do Quartusr II. As seguintes opções devem ser levadas em consideração

ao longo da instalação6:

• Quartus II (obrigatório): o software de desenvolvimento propriamente dito;

• SOPC Builder support (obrigatório): essa é uma ferramenta obrigatória no desenvol-

vimento do softcore NIOS II, não explorado ao longo do curso (Altera, 2010e);

• IP Library (obrigatório): contém toda a propriedade intelectual que implementa de-

terminadas funcionalidades, tais como controladores de memória, periféricos de interfaces

(Ethernet, PCI, PCIx), dentre outras possibilidades (Altera, 2010d);

• Cyclone II support (obrigatório): suporte à famı́lia de FPGA que é usada no kit de

desenvolvimento DE1;

• Third-party EDA tool interfaces (opcional): ferramentas auxiliares de desenvol-

vimento implementadas por empresas parceiras da Altera;

• Tutorial files (opcional): arquivos auxiliares de tutoriais disponibilizados no diretório

de instalação (arquivos em formato .pdf) e bastante úteis. Recomenda-se que sejam

instalados (e estudados).

Existem dois estilos para o ambiente de desenvolvimento: Quartus II e MAX+PLUS

II, sendo esse último layout a base para esse tutorial. A opção pelo estilo do ambiente de

desenvolvimento aparece logo após que a instalação do Quartusr II tenha sido finalizada,

assim como é apresentado na Figura 4(a). Caso o usuário queira alterar para o padrão Quartus

II, basta ir em

Tools > Customize

Aparecerá então a janela apresentada na Figura 4(b) e, assim, pode-se selecionar a opção

Quartus II. O software de desenvolvimento deve obrigatoriamente ser reiniciado para que as

alterações sejam efetivadas.

Na primeira vez que o kit de desenvolvimento é conectado ao computador, assim como

qualquer dispositivo (por exemplo, pendrive, cartões de memória, câmeras fotográficas, tocado-

res de MP3), é necessário que seja instalado o driver USB-Blaster, responsável pela comu-

nicação do kit com o computador. Em outras palavras, esse driver permite que a configuração

do chip FPGA (ou em qualquer outro chip que utilize esse tipo de controlador) seja carregada

nele a fim de que este execute um conjunto de funções espećıfico. Este driver é instalado no

diretório
6A t́ıtulo de observação, opções relativas às famı́lias de FGPA Stratix, Cyclone, Cyclone III,

Cyclone IV, MAX e outros podem ser desconsiderados. Eventualmente, opções relacionadas a outras funci-
onalidades (tais como tutoriais e arquivos de ajuda) podem ser, caso seja de interesse do usuário, adicionadas
durante a instalação.

14

(a) (b)

Figura 4: Configuração do ambiente de desenvolvimento: (a) na inicialização do software e (b)
após a inicialização, em qualquer momento que seja de interesse do usuário.

<diretório de instalação de Quartus II>/drivers/usb-blaster

Maiores informações e detalhes sobre como proceder são encontradas a partir de http:

//www.altera.com/support/software/drivers/usb-blaster/dri-usb-blaster-xp.html?

GSA_pos=4&WT.oss_r=1&WT.oss=usb-blaster.

4 Modelando Um Projeto

Antes de criar um projeto no ambiente Quartusr II, é necessário modelar o problema

em uma linguagem processável pelos circuitos digitais. Nesta seção são mostrados os passos de

a modelagem de um problema.

Um exemplo prático de projeto a ser empregado ao longo deste tutorial consiste de um

circuito lógico digital que implementa uma máquina de estados de Moore, cuja sáıda depende

de uma variável de entrada x (x = “1”ou x = “0”). Esta máquina é denominada“Detector de

Sequência Zero”. Basicamente, ela será capaz de detectar uma sequência consecutiva de 3

zeros. Sempre que a sequência é detectada, sinaliza-se com um ńıvel lógico ALTO representado

pela variável de sáıda z. Maiores informações podem ser adquiridas em (Wu, 2001).

4.1 Modelo Comportamental

Uma forma para representar o comportamento do circuito em questão é o diagrama de

estados, conforme ilustra Figura 5. A tabela de estados e sáıdas, apresentada na Tabela 1, é

uma representação alternativa para Figura 5.

15

0

0

0

0

0

0

0

1 1

1

1

1

0 zero

1 zero

2 zeros

3 zeros

Figura 5: Diagrama de estados do detector de sequência de zeros.

x

Estado 0 1 z

S1 (0 “zero”) S0 S1 0
S2 (1 “zero”) S0 S2 0
S3 (2 “zeros”) S0 S3 0
S4 (3 “zeros”) S0 S1 1

Próximo estado

Tabela 1: Tabela de transições de estados e sáıdas para o diagrama da Figura 5.

4.2 Modelo Estrutural

Para poder implementar o diagrama de estados da Figura 5 com blocos lógicos elementa-

res, como portas lógicas, latches e flip-flops, é necessário reduzi-lo em funções lógicas definidas

sobre variáveis binárias. O primeiro passo consiste, então, em definir quais serão as variáveis

de estado. Nesse exemplo, tomando como base o que é apresentado na Tabela 1, são utilizados

quatro estados. Consequentemente, dois bits, q1q0, são suficientes para representá-los.

No segundo passo, deve-se construir a tabela de transições e de sáıdas para o sistema.

Nesse projeto, serão atribúıdos (arbitrariamente) os valores 00, 01, 10 e 11 que q1q0 podem

assumir relativos aos estados S0, S1, S2 e S3, respectivamente. Dessa maneira tem-se Tabela 2.

x

q1q0 0 1 z

00 00 01 0
01 00 11 0
10 00 10 0
11 00 01 1

q∗
1
q∗
0

Tabela 2: Tabela 1 em códigos binários.

No terceiro passo, definem-se os flip-flops a serem utilizados e suas respectivas tabelas

de excitações. Para esse projeto, serão empregados 2 flip-flops tipo D para armazenar os dois

bits de estado q1q0. Assim sendo, tem-se a Tabela 3 e a Tabela 4.

16

x

q1q0 0 1

00 0 0

01 0 1

10 0 1

11 0 0

Tabela 3: Tabela de excitação do flip-

flop d1 correspondente ao bit q1.

x

q1q0 0 1

00 0 1

01 0 1

10 0 0

11 0 1

Tabela 4: Tabela de excitação do flip-

flop d0 correspondente ao bit q0.

No quarto passo, são derivadas as equações de excitação de cada um dos flips-flops a

partir das Tabelas 3 e 4:

d1 = x · q0

d0 = x · q
1
+ x · q

0
(2)

No quinto passo, deriva-se a equação de sáıda:

z = q1 · q0
. (3)

E, assim, é sintetizado o comportamento descrito na Figura 5, ou alternativamente na

Tabela 1, em relações lógicas entre os sinais binários de entrada e de estados. Tais funções são

facilmente mapeáveis em componentes lógicos e conexões entre as sáıdas e as entradas destes

componentes. Parte-se, então, para criação de um novo projeto no ambiente Quartusr II.

5 Criando um Projeto no Quartusr II

Para dar ińıcio a um projeto no ambiente Quartusr II, o primeiro passo a ser conside-

rado consiste em criar o arquivo principal de projeto (também denominado top-level) já que é

a partir dele que a compilação do projeto será feita. Para isso, e tomando como base o FPGA

Cyclone II EP2C20F484C7 presente no kit de desenvolvimento DE1, faça o seguinte:

File > New Project Wizard

e, assim, a janela apresentada na Figura 6(a) será aberta.

Em seguida, basta repetir os passos apresentados nas Figuras 6(b) a 6(f), tomando o

cuidado de escolher o part number do dispositivo FPGA corretamente. A t́ıtulo de curiosidade,

17

(a) (b)

(c) (d)

(e) (f)

Figura 6: Project Wizard consiste de uma ferramenta de aux́ılio para a criação de um projeto
com uma entidade na ráız (top-level): (a) diretrizes de como o projeto será estruturado; (b)
definição da pasta na qual o projeto será armazenado, bem como o nome do projeto em si e
o nome da entidade ráız; (c) inserção de arquivos desenvolvidos em projetos anteriores; (d)
escolha do dispositivo FPGA onde o projeto será programado; (e) escolha de ferramentas de
śıntese e simulação espećıficas (de empresas parceiras da Altera); (f) finalização com um resumo
das configurações e caracteŕısticas do projeto.

18

vale observar que mesmo desabilitando a instalação de várias famı́lias de FPGA, no passo

correspondente à escolha do dispositivo, todos os modelos de PLDs produzidos pela Altera

estão dispońıveis ao usuário. É posśıvel escolher outro modelo de FPGA não instalado contudo,

deve-se ater ao fato de que quando o projeto for compilado, vários erros serão apresentados

devido a falta de suporte para o mesmo.

Figura 7: Botão em destaque habilita a hierarquia de projeto. A árvore que representa todos
os módulos que compõem o projeto também está destacado.

Finalizado o Project Wizard, o Quartusr II volta para a sua janela inicial. Caso

queira acompanhar ou analisar a hierarquia das entidades que compõem o projeto, clique no

botão destacado na Figura 7 e aparecerá uma nova janela mostrando a árvore de hierarquia das

entidades do projeto.

6 Criando Arquivos de Projeto

O próximo passo consiste na criação de arquivos de projeto para descrever os circuitos

presentes nele. No ambiente Quartusr II são disponibilizados dois editores para descrevê-los:

Editor (Gráfico) de Bloco e Editor de Texto. Isso é porque neste ambiente a construção do

circuito pode ser feito em ńıvel de abstração comportamental via uma linguagem de descrição

de hardware (Hardware Description Language - HDL) tais como Verilog, AHDL e VHDL

(Pedroni, 2008; Perry, 2002), ou em ńıvel de abstração estrutural via captura de esquemáticos.

Tendo isso em mente, o seguinte procedimento deve ser executado para abrir uma janela

apresentada na Figura 8 a fim de criar um arquivo de esquemático:

File > Block Diagram/Schematic File

19

Figura 8: Janela para criação de um arquivo do projeto.

Vale observar que qualquer outro tipo de arquivo de projeto que venha a ser criado e

inserido ao projeto, seja outro arquivo de esquemático, seja um arquivo em VHDL ou Verilog,

ou até mesmo um arquivo para simulação temporal, pode ser escolhido a partir dessa janela.

Antes de iniciar a edição do arquivo, convém salvar o arquivo com um nome apropriado.

Para isso, ative

File > Save As

e escolha um nome. De preferência, um nome que resuma o que está sendo projetado. Deve-se

prestar atenção ao fato de que abaixo do nome e do tipo do arquivo temos uma opção que deve

ser selecionada. Esta opção faz com que o novo arquivo de projeto seja inserido no projeto

criado na Seção 5. Lembre-se, também, que em cada pasta deve existir apenas um projeto, mas

podem existir inúmeros arquivos de projeto que realizam funções espećıficas.

7 Capturando o Esquemático

Ao longo dessa seção, são apresentados os principais procedimentos a serem empregados

para a construção do diagrama eletro-lógico, ou esquemático, dos circuitos eletrônicos digitais

com uso do editor gráfico no ambiente Quartusr II. O circuito da máquina de estados apre-

sentado na Seção 4 será utilizado como base para os procedimentos apresentados. O arquivo de

projeto que foi aberto para constrúı-lo será salvo como detectorSequencia.bdf (Figura 9).

20

Figura 9: Salvando o arquivo recém criado.

7.1 Inserção de Componentes

A construção de um esquemático pode ser feita a partir da utilização de componentes

primitivos (tais como portas lógicas e flip-flops), de blocos que realizam as funcionalidades

de circuitos integrados comerciais (7485, 7404, 74162) e, até mesmo, blocos desenvolvidos em

linguagem de descrição de hardware.

Para inserir um componente existente, deve-se clicar duas vezes na área de trabalho do

editor gráfico (ou fazer Edit > Insert Symbol). Em seguida, no campo Name, deve-se digitar

o part number do componente ou o seu nome (por exemplo, 7408 ou and2). O resultado para

essa ação é exemplificado na Figura 10. Vale observar que, caso a opção Repeat-insert mode

seja selecionada, o usuário pode adicionar quantos componentes se queira e, quando o número

desejado tenha sido alcançado, basta clicar com o botão direito do mouse e optar por cancelar

a ação.

Vale comentar aqui que no ambiente Quartusr II dispõe-se de uma funcionalidade que

facilita a inserção dos pinos de entrada e de sáıda. Basta selecionar cada componente que tem

pinos de entrada e sáıda (clicar o botão esquerdo do mouse em cima dele), apertar o botão

direito do mouse e selecionar o item Generate Pins for Symbol Ports no pop-up menu que

vai surgir.

7.2 Ligação entre Componentes

Inseridos os componentes necessários ao projeto, deve-se fazer as ligações. Essa é uma

tarefa bastante simples de ser realizada. Existem duas ligações básicas que podem ser reali-

21

Figura 10: Inserção de um componente 7408.

zadas e duas maneiras distintas de se fazer isso. O primeiro modo de se fazer uma ligação

entre componentes consiste em aproximar o cursor na porta que se deseja conectar. O cursor

automaticamente muda o seu formato para o de uma cruz e, assim, o modo de ligação entre

os componentes torna-se ativo. Uma segunda maneira consiste em selecionar um dos botões

destacados na Figura 11.

Figura 11: Edição de ligações.

Dentre os tipos mais comuns de ligações que podem ser realizados no Quartusr II são

as ligações simples e os barramentos. As ligações simples transportam apenas um sinal (ou

bit) de dados por vez enquanto que os barramentos transportam n sinais (ou bits) de uma vez.

Estes sinais podem transportar dados, endereços ou sinais de controle (Tocci et al., 2008).

Na Figura 11 a ligação simples é representada graficamente pela linha mais fina (podendo

ser criada ao ativar o botão superior em destaque) e o barramento pela linha mais grossa (no

destaque, ativado pelo botão central). Vale observar ainda que a convenção adotada para

22

indicar o tamanho n do barramento LEDR é LEDR[n − 1..0].

7.3 Nomeação dos Pinos de Entrada e de Sáıda

Um ponto que vale ser ressaltado consiste na denominação dos pinos de entrada e de

sáıda, que devem ser conectados aos pinos dos periféricos. No kit de desenvolvimento DE1,

os pinos dos periféricos dispońıveis já se encontram conectados a alguns pinos do chip FPGA.

Portanto, para utilizar tais periféricos nos testes de campo, é necessário associar, ou mapear,

apropriadamente os pinos de entrada e de sáıda do circuito aos pinos do chip FPGA. No jargão

de laboratório, este procedimento é conhecido como assignment dos pinos. Isso pode ser feito

manualmente, abrindo uma janela através de

Assignments > Pins.

Uma outra alternativa, muito mais simples e altamente recomendada, consiste em uti-

lizar os nomes adotados no manual da placa de desenvolvimento DE1 e importar o arquivo

DE1_pin_assignments.csv onde se encontram definidas todas as associações. Este arquivo é

disponibilizado em (Altera e Terasic, 2010)7. Aconselha-se que o arquivo DE1_pin_assignments.csv

seja copiado para o diretório de projeto. Para importar o assignment, deve-se abrir a caixa de

diálogo da Figura 12 via

Assignments > Import Assignments

Em seguida, deve-se inserir no campo File Name o nome do arquivo e confirmar a ação. Esse

procedimento deve ser realizado somente uma vez, antes da primeira compilação do projeto.

Todas as modificações e compilações futuras não necessitam que o procedimento de importação

seja realizada novamente.

Figura 12: Janela para importação do arquivo com os assignments dos pinos para a placa DE1.

A (re)nomeação dos pinos de entrada (input) e de sáıda (output) é feita simplesmente

clicando-se duas vezes nos respectivos pinos. No projeto em questão, usamos os nomes SW[0],

KEY[0] e LEDG[0]. Na Figura 13 tem-se o circuito lógico finalizado da máquina de estados,

com os pinos devidamente associados aos pinos dos periféricos.

7O arquivo está também dispońıvel na página do curso de EA773 a partir do 1o semestre de 2010.

23

Figura 13: Esquemático da máquina de estados com pinos mapeados nos periféricos.

7.4 Nomeação das Linhas das Ligações

O Quartusr II possui uma funcionalidade bastante interessante e extremamente útil

que consiste na nomeação das ligações entre os diversos componentes e pinos de entrada/sáıda

que compõem um projeto. Uma forma de fazer isso é clicar em cima da linha de ligação que

se queira nomear e apertar o botão esquerdo do mouse sobre a linha selecionada. Em seguida,

escolha o item Properties do menu que surgirá e escreva no campo Name o nome da linha.

Essa caracteŕıstica funcional do Quartusr II permite ao projetista realizar ligações

“virtuais”, ou seja, permite que a sáıda de um determinado componente seja conectada a uma

entrada de um outro sem a necessidade da ligação f́ısica, somente nomeando-se as ligações. Na

Figura 14 tem-se uma aproximação do esquemático que descreve a máquina de estados apre-

sentada na Figura 13. Esse é um exemplo de como a ligação “virtual” pode ser implementada.

Figura 14: Ligação “virtual”.

Uma outra possibilidade para essa ferramenta está relacionada à análise das formas de

ondas e resposta temporal do circuito sendo que os procedimentos necessários para gerar uma

simulação temporal serão apresentados na Seção 13. Assim sendo, a t́ıtulo de observação, a

nomeação de ligações permite que determinados sinais internos do circuito (por exemplo, um

sinal de controle que ative um latch) sejam mapeados em pinos de sáıda e, com isso, possam

24

ser analisados no arquivo de simulação, com o aux́ılio dos diagramas temporais. Na Figura 15 é

destacado o circuito de detecção de sequência zero onde as sáıdas dos flip-flops estão mapeados

em pinos de sáıda, possibilitando a análise da resposta temporal durante a simulação do circuito.

Figura 15: Ligação “virtual” entre os sinais intermediários q[1] e q[0] e os pinos de sáıda.

8 Descrevendo em VHDL

Descrever um circuito digital através de uma linguagem gráfica como esquemáticos

tornou-se, hoje em dia, bem menos popular que utilizar ferramentas baseadas em linguagens

textuais. Usualmente fazer uma descrição textual é menos trabalhoso e menos complexo que ela-

borar um esquemático. O ambiente Quartusr II dispõe de compiladores lógicos que convertem

essas descrições textuais em arquivos binários transfeŕıveis ao dispositivo lógico programável

via a conexão serial do PC (Seção 10).

Para a descrição de circuitos em VHDL dentro do Quartusr II (ou, também, empre-

gando Verilog ou AHDL), é necessário criar um arquivo espećıfico acessando a opção VHDL

File na janela apresentada na Figura 8. Um editor de texto será ativado e o arquivo aberto será

salvo com a extensão vhd. Quanto ao nome do arquivo, recomenda-se que seja algo que lembre

da funcionalidade do circuito. Este nome deve ser o mesmo nome da seção ENTITY

do componente de VHDL. No caso, o arquivo será salvo como detector_funcional.vhd.

O Código 2 é o conteúdo do arquivo, que corresponde à descrição funcional, em VHDL do

detector de sequência zero apresentada na Seção 4.1.

É posśıvel implementar o modelo estrutural de um projeto em VHDL. Neste caso, a

descrição consiste da declaração dos componentes lógicos utilizados e das ligações entre as portas

de entrada e sáıda destes componentes. É uma versão textual do esquemático, como ilustra o

Código 3 salvo como detector_estrutural.vhd.

Vale observar que qualquer editor de texto pode ser usado para construir/modificar um

código de descrição de hardware desde que os cuidados quanto ao nome e extensão do arquivo

25

1 library ieee;

2 use ieee.std_logic_1164.all;

3

4 entity detector_funcional is

5 port(

6 clk : in std_logic;

7 x : in std_logic;

8 z : out std_logic

9);

10 end entity;

11

12 architecture comportamento of detector_funcional is

13 type estados is (s0, s1, s2, s3);

14 signal state : estados;

15 begin

16 process (clk)

17 begin

18 if(rising_edge(clk)) then

19 case state is

20 when s0=>

21 if x = ’1’ then

22 state <= s1;

23 else

24 state <= s0;

25 end if;

26 when s1=>

27 if x = ’1’ then

28 state <= s2;

29 else

30 state <= s0;

31 end if;

32 when s2=>

33 if x = ’1’ then

34 state <= s3;

35 else

36 state <= s0;

37 end if;

38 when s3 =>

39 if x = ’1’ then

40 state <= s1;

41 else

42 state <= s0;

43 end if;

44 end case;

45 end if;

46 end process;

47 process (state)

48 begin

49 case state is

50 when s0 =>

51 z <= ’0’;

52 when s1 =>

53 z <= ’0’;

54 when s2 =>

55 z <= ’0’;

56 when s3 =>

57 z <= ’1’;

58 end case;

59 end process;

60 end comportamento;

Código 2: Implementação do modelo funcional do detector em VHDL.

sejam tomados. A vantagem de utilizar o editor de texto do ambiente Quartusr II é que

ele dispõe de um conjunto de modelos de programação para uma grande variedade de circuitos

combinacionais e sequenciais.

O ambiente Quartus II dispõe de visualizadores gráficos do resultado da śıntese (Se-

ção 11). Recomenda-se esta prática porque o procedimento de compilação nem sempre gera os

26

1 library ieee;

2 use ieee.std_logic_1164.all;

3

4 entity detector_estrutural is

5 port(

6 clk : in std_logic;

7 x : in std_logic;

8 z : out std_logic

9);

10 end;

11

12 architecture comportamento of detector_estrutural is

13 signal d1, d0, q0, q1, t1, t0: std_logic;

14 component dff

15 port(D: in std_logic;

16 CLK: in std_logic;

17 Q: out std_logic);

18 end component;

19 component and2

20 port(IN1: in std_logic;

21 IN2: in std_logic;

22 \OUT\: out std_logic);

23 end component;

24 component or2

25 port(IN1: in std_logic;

26 IN2: in std_logic;

27 \OUT\: out std_logic);

28 end component;

29 begin

30 DFF0: DFF

31 port map (d0, clk, q0);

32 DFF1: DFF

33 port map (d1, clk, q1);

34 U0: AND2

35 port map (x, not q1, t0);

36 U1: AND2

37 port map (x, not q0, t1);

38 U2: OR2

39 port map (t0, t1, d0);

40 U3: AND2

41 port map (x, q0, d1);

42 U4: AND2

43 port map (not q0, q1, z);

44

45 end comportamento;

Código 3: Implementação do modelo estrutural do detector em VHDL.

melhores resultados. Modifiçãções podem ser necessárias para direcionar melhor o algoritmo

de compilação no processo de śıntese.

9 Encapsulando os Componentes

Foi apresentado na Seção 2.2 que no ambiente de desenvolvimento de projeto Quartusr

II os arquivos de projeto são organizados hierarquicamente. É conveniente que as entidades

neles descritas sejam encapsuladas em componentes de forma que somente a sua função e a sua

interface de entrada e sáıda sejam vistas pelas entidades de ńıvel mais alto ou até mesmo em

outros projetos8.

Śımbolos de componentes podem ser criados de forma muito simples no ambiente de

8Esse procedimento é análogo à criação de funções, seja, por exemplo, usando linguagem C ou scripts do
MATLAB.

27

desenvolvimento Quartusr II a partir de códigos em VHDL ou a partir de arquivos de

esquemáticos. Primeiramente, deve-se tomar o cuidado de tornar o arquivo de projeto na

entidade de maior hierarquia (Top-Level Entity) e de tornar a janela de edição o foco. Em

seguida, deve-se selecionar

File > Create/Update > Create Symbols File from Current File

e, logo em seguida, é aberta uma janela para salvar o arquivo/śımbolo correspondente (extensão

.bsf). No caso do projeto da máquina detectora, foi criado um arquivo de śımbolo para o

circuito da Figura 15, sendo salvo como detectorSequencia.bsf.

Figura 16: Inserção de um componente criado em um arquivo de projeto.

Para inserir o componente criado em um esquemático, basta escolher o nome do compo-

nente nos diretórios após clicar o botão ao lado do campo Name na Figura 10. Na Figura 16

tem-se a ilustração de um esquemático com o componente detectorSequencia.bsf. Ressalta-

se que o nome atribúıdo a cada pino de entrada e de sáıda no arquivo de projeto é preservado

no śımbolo criado. Se as portas de sáıda q[1] e q[0] forem agrupadas em um vetor q[1..0],

tem-se um circuito como o apresentado na Figura 17, a partir do qual é criado um śımbolo com

uma porta q[1..0], ao invés de 2 portas (q[1] e q[0]), como mostra o circuito da Figura 18.

Dessa maneira, sugere-se que o usuário empregue nomes que resumam a funcionalidade do

sinal. Vale comentar que os cuidados quanto a espaços nos nomes devem ser adotados aqui

(por exemplo, uma entrada do tipo entrada 01 deve ser evitada; prefira entrada01 ou algo do

gênero).

Figura 17: Agrupamento de mais de uma linha em uma porta de sáıda.

Para inserir um componente em um arquivo de projeto em VHDL, basta declarar a

interface do componente. Esta interface pode ser gerada no ambiente Quartusr II após setar

28

Figura 18: Uso de barramento na porta com mais de uma linha.

o componente como o de ńıvel mais alto e criar o código de declaração do componente por meio

de

File > Create/Update > Create VHDL Component Declaration Files for Current File

O Código 3 exemplifica a declaração de três componentes: dff, and2 e or2.

Pensando em projetos de grande porte, é mais eficaz que os componentes sejam testados

e simulados separadamente, pois garante-se que cada um esteja funcionando corretamente.

Assim, se ocorrer problemas na integração, a depuração do circuito fica mais simples já que

os blocos foram testados previamente. Outra vantagem de compilar e testar os componentes

individualmente é a possibilidade de utilização destes componentes em outros projetos. Os

procedimentos de compilação e simulação são detalhados, respectivamente, na Seção 10 e na

Seção 13.

10 Compilando

A compilação é um processo necessário visto que vai analisar se existe algum erro relaci-

onado ao projeto, tal como curto-circuitos e sinais duplicados, além de otimizá-lo e sintetizá-lo

em elementos lógicos dispońıveis no FPGA selecionado. Por exemplo, uma das otimizações

realizadas consiste em que a área ocupada pelo circuito seja menor, sem comprometer a velo-

cidade de operação do circuito. Nesta etapa são também pré-avaliados os requisitos do projeto

para verificar se o circuito sintetizado irá atendê-los. Um outro ponto que deve ser levado em

consideração consiste no fato de que é ao final dessa etapa que serão gerados os arquivos biná-

rios necessários tanto para a simulação do todo o, ou parte do, projeto (Seção 13) quanto para

a configuração do FPGA do kit de desenvolvimento (Seção 14).

Inicialmente, deve-se lembrar que o Quartusr II trabalha com o conceito de hierarquia,

como discutido na Seção 2.2. Assim sendo, é fundamental que o arquivo de projeto, tanto em

VHDL quanto em esquemático, que se pretende compilar seja o de maior hierarquia. Para

garantir que o arquivo de projeto aberto seja o de maior ńıvel hierárquico na compilação,

recomenda-se que se coloque o editor do arquivo em foco e selecione

Project > Set as Top-Level Entity

29

ou simplesmente use a tecla de atalho Ctrl+Shift+J. No exemplo, o arquivo detectorSe-

quencia.bdf deve ser setado como o topo da árvore. Na Figura 19 é destacada a mensagem

de que a operação foi executada com sucesso.

Figura 19: Mensagem da atual subarvore com detectorSequencia.bdf no topo.

Agora que o arquivo detectorSequencia.bdf está habilitado como o top-level, deve-se

evocar

MAX+Plus II > Compiler

(ou tecla de atalho Ctrl+L) para compilá-lo. A Figura 20 apresenta a janela que mostra o

progresso da compilação.

Observa-se que as quatro etapas do fluxo completo de compilação são mostradas na

janela: Analysis & Synthesis, Fitter, Assembler e Classic Timing Analysis. Ao concluir este

fluxo, pode-se analisar o relatório sobre o processo clicando o botão Report. É posśıvel seleci-

onar o tópico do relatório escolhendo um dos itens na coluna esquerda da janela que surgirá.

Por exemplo, para o circuito de detector de sequência zero, ao selecionar

Flow Summary

a janela ficou como a apresentada na Figura 21. Ela mostra que o circuito foi sintetizado,

com sucesso, para o dispositivo EP2C20F484C7 da famı́lia Cyclone II com uso de 3 dos 18.752

elementos lógicos.

E ao selecionar

30

Figura 20: Janela de compilação.

Figura 21: Resumo do fluxo de compilação.

Timing Analyzer > Summary

obtém-se o resumo de desempenho temporal apresentado na Figura 22.

11 Visualizando os Resultados da Compilação

Para facilitar a análise e a depuração de um projeto, o Quartusr II dispõe de alguns

visualizadores gráficos de netlist sintetizado: RTL Viewer, State Machine Viewer e

Technology Map Viewer. O primeiro mostra o resultado da śıntese a ńıvel de registros de

31

Figura 22: Sumário sobre o desempenho temporal do projeto.

transferências (Register Transfer Level – RTL), que consiste basicamente em uma representação

por registradores interligados por lógica combinacional, e o segundo, os estados e as transições

entre os estados do projeto. O último visualizador, por sua vez, apresenta a hierarquia de

unidades atômicas (células e portas de entrada/sáıda) utilizadas na śıntese do projeto. Figura 23

ilustra as três formas de visualização da śıntese do Código 2, correspondente à especificação do

projeto de detector de sequência zero (seção 4).

(a) (b)

(c)

Figura 23: Distintas formas de visualização gráfica de netlist: (a) State Machine Viewer,
(b) RTL Viewer, e (c) Technology Map Viewer.

A sequência de comandos utilizados para habilitar estes visualizadores é:

Tools > Netlist Viewers

32

12 Analisando as Restrições de Tempos do Projeto

No ambiente Quartusr II encontram-se dois analisadores de tempos estáticos: Classic

Timing Analyzer e TimeQuest Timing Analyzer. Embora a Altera recomende o uso do segundo

analisador, o primeiro analisador é suficiente para o propósito da disciplina EA773. Para

utilizar o primeiro analisador, é necessário configurar o ambiente para tal. Abre-se a caixa de

diálogo de configuração através de

Assignments > Settings

e seleciona-se Timing Analysis Settings na lista Category para ativar Use Classic Timing Analy-

zer during compilation. Nesta mesma caixa de diálogo é posśıvel especificar as restrições tempo-

rais do seu projeto que são utilizadas como referência no cômputo dos tempos. Os tempos com

valores positivos indicam margens positivas em relação à restrição imposta (restrição satisfeita)

e os valores negativos correspondem às margens negativas (restrição não atendida).

O analisador classifica, em primeiro lugar, todos os posśıveis caminhos de sinais em: os

do sinal de relógio (CLOCK), os de dados, e os de sinais de controle asśıncronos como os PRN e

CLRN nos flip-flops. Em seguida, são estimados os seguintes tempos de percurso dos sinais entre

os pinos de entrada e sáıda do circuito e os registradores internos:

• tSU : corresponde ao intervalo de tempo que o sinal de dado deve chegar e estabilizar antes

da ocorrência de uma transição do sinal de relógio;

• tH : corresponde ao intervalo de tempo que o sinal de dado precisa se manter estável após

a ocorrência de uma transição do sinal de relógio.

• tCO: corresponde ao (mı́nimo e máximo) intervalo de tempo necessário para obter uma

sáıda válida após a ocorrência de uma transição do sinal de relógio.

Os tempos de propagação dos sinais através da parte combinacional do circuito também

são determinados:

• tPD: corresponde ao (mı́nimo e máximo) intervalo de tempo para um sinal propagar de

um pino de entrada do circuito até um pino de sáıda via os elementos combinacionais.

A frequência máxima de operação do sinal de relógio (Registered Performance), sem que

as restrições temporais de todos os sinais do circuito sejam violadas, é também computada.

Vale ainda comentar que o analisador de tempos gera advertências quando ocorre o

fenômeno clock skew, que consiste na diferença entre os instantes que um mesmo sinal de

clock chega em dois registradores distintos. Isso nem sempre implica em violações das restrições

33

temporais do projeto já que às vezes é necessário introduzir propositalmente os atrasos para

compatibilizá-los com os atrasos dos sinais de dados ao longo do seu percurso.

Para acessar todos os dados temporais gerados durante a compilação, deve-se selecionar

MAX+PLUS II > Timing Analyzer

e, assim, aparecerá uma pasta com 6 abas, como é ilustrado na Figura 24. Caso seja de interesse

ter o conhecimento dos detalhes de um dos tempos listados anteriormente, basta clicar na aba

correspondente.

Figura 24: Interface do Analisador de Tempo Clássico.

13 Simulando

O próximo passo consiste em realizar simulações que representem o comportamento dos

periféricos, o mais próximo da realidade posśıvel. As simulações são utilizadas também para

verificar o funcionamento do circuito de maior hierarquia pela análise das formas de onda, ve-

rificando a integridade dos sinais e, assim, comprovando o correto funcionamento do sistema

antes de carregá-lo no dispositivo FPGA do kit DE1. Tendo isso em mente, para realizar

a simulação, é preciso criar um arquivo espećıfico, denominado Vector Waveform File, sim-

plesmente fazendo File > New e selecionando a opção correspondente, como é ilustrado na

Figura 25. Outra forma alternativa seria

MAX+Plus II > Waveform Editor

Feito isso, o ambiente de trabalho assumirá uma forma semelhante à apresentada na

Figura 26.

34

Figura 25: Criando o vetor de análise de formas de ondas.

Figura 26: Arquivo de formas de ondas criado.

Criado o arquivo de forma de onda, é necessário acrescentar todos os sinais que serão

analisados. Para isso, deve-se fazer

Edit > Insert > Insert Node or Bus

e a janela ilustrada na Figura 27 deve aparecer. Em seguida deve-se clicar em Node Finder

e uma nova janela, como mostrado na Figura 28, irá aparecer. Nesse ponto, deve-se prestar

atenção se o arquivo detectorSequencia.bdf está selecionado em Look in e se o filtro está

selecionado como Pins:all (nessa opção, todos os pinos de entrada e de sáıda serão apresentados

35

e poderão ser inseridos no arquivo de forma de ondas). Feito isso, seleciona-se os pinos desejados

e clica-se no botão em destaque da Figura 28. Opcionalmente, podemos clicar no segundo botão

para selecionar todos os sinais simultaneamente.

Figura 27: Caixa de diálogo para inserção de sinais.

Figura 28: Caixa de seleção de sinais acesśıveis.

É necessário observar que a versão do circuito empregada ao longo desta seção é aquele

mostrado na Figura 19. Portanto, a janela apresentada anteriormente na Figura 26 conterá os

pinos SW[0], KEY[0] e LEDG[0], assim como é apresentado na Figura 29. Edita-se as formas de

onda da maneira que for conveniente ao projeto, ou seja, editar as formas de onda de modo que

todas as posśıveis situações (ou pelo menos, a maioria) de funcionamento do circuito sejam con-

templadas e que, além disso, a relação temporal entre os sinais obedeça as restrições temporais

consideradas nas especificações do projeto. Para editar as formas de onda, é necessário utilizar

os botões destacados na Figura 29 tal como o botão que está sinalizado. Esse botão permite

a criação de sinais periódicos (sinais de relógio/sinais de clock). Por exemplo, o pino KEY[0]

36

foi selecionado, o botão em destaque foi pressionado e editou-se o sinal de clock de modo que

o peŕıodo do sinal fosse igual a 50 ns. Informações mais detalhadas podem ser encontradas no

documento Quartus II Classic Timing Analyzer9.

Figura 29: Elementos para edição da forma de onda de cada sinal.

Para a máquina de estados em questão, os sinais devem ser editados de forma que a

sequência de 3 zeros seja detectada (LEDG[0] = 1), comprovando o correto funcionamento do

circuito. Após feitas todas as configurações nos sinais, deve-se salvar o arquivo. Por definição,

o Quartusr II salva o arquivo com as formas de onda com a extensão .vwf e com o mesmo

nome do top-level em estudo (no caso, detectorSequencia).

Para executar a simulação propriamente dita, deve-se fazer

MAX+PLUS II > Simulator.

Será aberta uma nova janela, onde é necessário indicar no campo Simulation input qual

o arquivo de formas de onda será analisado (Figura 30). Isso porque em projetos maiores, cada

arquivo de projeto pode ser constrúıdo e simulado separadamente com uma grande variedade

de formas de onda. Especificamente para o exemplo do detector de sequência, o arquivo de-

tectorSequencia.vwf deve ser adicionado clicando-se no botão destacado na Figura 30. Uma

outra opção que deve ser marcada é aquela destacada em uma caixa. Essa opção permite que

as formas de onda sejam atualizadas sempre que novas simulações forem geradas. Feito isso,

basta então selecionar a opção Timing no campo Simulation mode, e executar a simulação

propriamente dita. Para a máquina de estados em estudo, um comportamento posśıvel é o

apresentado na Figura 31. No ambiente Quartusr II é posśıvel escolher o formato em que

os valores dos sinais são apresentados. Para isso, selecione a linha do sinal no editor de formas

de onda, aperte o botão direito do mouse, selecione o item Properties do pop-up menu que

aparecerá, e finalmente selecione o formato desejado no campo Radix.

9Dispońıvel em http://www.altera.com/support/software/timing/sof-qts-timing.html.

37

Figura 30: Configuração dos parâmetros para simulação.

A t́ıtulo de observação, para a execução do outro modo de simulação, a Functional, pri-

meiramente deve-se clicar em Generate Functional Simulation Netlist antes de executar

a simulação. Esse opção de simulação ignora os atrasos na resposta de cada componente. Em

outras palavras, esse modelo de simulação intenciona a verificação da funcionalidade lógica do

circuito. Contudo, durante procedimentos de depuração, o modo Timing é o mais recomen-

dada já que leva em consideração as caracteŕısticas de temporização (e atrasos) do circuito

(Nicolato, 2002).

Figura 31: Formas de onda dos sinais que se resultaram de uma simulação.

Uma última observação vale ser realizada. Diante das ferramentas de análise e de simu-

lação disponibilizadas pelo Quartusr II, pode-se levar em consideração que uma boa técnica

para projetos consiste em, primeiramente, realizar uma simulação funcional para determinar o

correto funcionamento do circuito, seguida de sua verificação temporal e, finalmente, verificar

a sua funcionalidade completa testando-o no sistema f́ısico (no caso, a placa DE1), junto com

38

outros dispositivos f́ısicos (por exemplo, motores de corrente cont́ınua a serem controlados pela

placa DE1) e as exigências ambientais de aplicação (Nicolato, 2002).

De posse das respostas obtidas e apresentadas na Figura 31, pode-se comprovar que o

circuito está funcionando como o esperado. Os flip-flops tipo D são atualizado a cada borda

de subida do sinal de relógio (representado pelo pino de entrada KEY[0]), desde que o sinal

x (representado pelo pino SW[0]) permaneça em ńıvel lógico ALTO. Conclui-se então que o

circuito está pronto para ser carregado no FPGA do kit DE1.

14 Carregando o Projeto

A fase final do projeto é fazer os “testes de campo”, carregando o projeto no dispositivo

FPGA selecionado e testando-o com os dispositivos f́ısicos reais. Ao longo do curso EA773

é utilizado o kit de desenvolvimento DE1 (Altera e Terasic, 2010). Essa placa possui diversos

periféricos, tais como LEDs, chaves, botões, pinos de propósito geral e outros componentes

mais complexos tais como memórias, interfaces de áudio e de v́ıdeo bem como comunicação

serial (RS232), conforme é ilustrado na Figura 32.

Figura 32: Placa de desenvolvimento DE1.

Como foge ao escopo deste texto, sugere-se uma leitura bastante atenta do seu manual,

disponibilizado em (Altera e Terasic, 2010) e também na página do curso EA773. Deve-se

prestar especial atenção, principalmente, como alguns periféricos são acionados. Por exemplo,

os LEDs são ativados quando ńıvel lógico alto é colocado no pino correspondente do FPGA

39

ao qual estão ligados. Já os botões são ativo baixo.

A transferência do arquivo binário gerado pelo compilador lógico para o FPGA é uma

tarefa bastante simples mas que, como todas os outros procedimentos realizados até aqui,

demanda de alguns cuidados. Primeiramente, o arquivo binário que será carregado no FPGA

é o projeto_novo.sof. Esse arquivo é criado a partir do arquivo de maior hierarquia de um

projeto, sendo definido em um dos primeiros passos do Project Wizard apresentado na Seção 2.

Dessa maneira, deve-se abrir o arquivo projeto_novo.bdf, setá-lo como o de maior hierarquia,

e inserir o componente criado na Seção 9, bem como pinos de entrada e de sáıda necessários,

renomeá-los respeitando a padronização de nomenclatura apresentada na Seção 7.3, importar

o assignment dos pinos e compilar o projeto. Nesse ponto, deve-se ter um circuito semelhante

ao ilustrado na Figura 33.

Figura 33: Circuito pronto para ser carregado no FPGA.

Em seguida, deve-se fazer

MAX+PLUS II > Programmer.

A janela que está ilustrada na Figura 34(a) aparecerá. Deve-se tomar o cuidado de que a

opção USB-Blaster esteja habilitada, como na Figura 34(c). Caso não esteja, basta clicar

em Hardware Setup e seguir os procedimentos ilustrados na Figura 34(b). Finalmente, basta

acionar a gravação e, caso tenha sido bem sucedida, uma mensagem irá aparecer assim como é

ilustrada na Figura 34(d). Em seguida, basta mudar a chave SW[0] para ALTO e pressionar o

botão KEY[0] repetidas vezes. Quando a contagem for igual a 3, ou seja, quando a sequência

de zeros for detectada, o LEDG[0] acenderá, indicando o sucesso e comprovando, na prática, o

correto funcionamento da máquina de estados.

40

(a) (b)

(c) (d)

Figura 34: Procedimentos para gravação do circuito no FPGA: (a) tela inicial para a gravação
do binário na placa; (b) janela para habilitar o USB-Blaster; (c) janela de gravação com o
USB-Blaster habilitado; (d) caixa de mensagem da conclusão de gravação bem sucedida.

15 FAQs

Esta seção contém as perguntas mais frequentes realizadas pelos alunos durante o curso

quando a versão beta deste manual foi apresentado. Tais questões foram transcritas para essa

nova versão e serão atualizadas conforme o andamento do curso neste e nos próximos semestres.

15.1 Por que a onda de sáıda está deslocada para a direita em relação

às entradas

Perceba que a sáıda z é modificada um pouco depois da mudança das entradas. Pen-

sando de forma ideal essa mudança na sáıda deveria ocorrer no mesmo instante em que as

entradas fosse modificadas. Deve-se atentar para o fato de que toda porta-lógico possui um

tempo de propagação, um atraso. Essa caracteŕıstica representa o tempo necessário para que

o sinal de entrada seja interpretado pelo circuito lógico e obtenha-se a resposta na sáıda. Os

motivos pelos quais isso ocorre fogem do interesse desse tutorial, mas podem ser entendidos

estudando-se a eletrônica interna de cada porta lógica, principalmente em relação a tecnologia

dos transistores envolvidos. Além disso, os datasheets dos componentes usualmente trazem

gráficos que representam esses tempos e os procedimentos que devem ser adotados para evitar

maiores problemas.

41

15.2 O que são esses picos que ocorrem, às vezes, nas transições?

Tome o cuidado de ampliar o pico (“zoom in”). Repare no eixo do tempo para calcular

a sua largura. Ele mede um pouco menos de 0.280 ns, ou seja, 280 ps (pico segundos). Isso

ocorre, como explicado anteriormente, devido à eletrônica interna das portas. Esse tipo de

fenômeno sempre ocorre nas transições. Isso é mais um motivo para evitar trabalhar com o

circuito muito próximo do tempo de atraso. Quanto maior o tempo que o dado fica na sáıda,

menos significativo é o rúıdo e menor a chance dele ser lido como um dado.

15.3 Como aumento o tempo máximo nas simulações?

Várias vezes foi citado que o tempo máximo não pode ser extrapolado, porém muitas

vezes ele é pouco para as nossas necessidades. Surge então a necessidade de aumentá-lo. Para

isso, abra o arquivo correspondente com as formas de onda a serem analisadas e faça Edit >

End Time e escolha o tempo máximo da simulação o qual seja mais conveniente para o circuito

em análise.

15.4 Não compila e aparece que o problema é a hierarquia.

Primeiro tome o cuidado de que não existem dois projetos na mesma pasta. Em seguida,

mude o arquivo principal na hierarquia, selecionando outra folha como folha principal. Um

procedimento bastante eficiente é aquele discutido anteriormente na Seção 10, onde é explicado

o procedimento para a compilação: abra na janela o arquivo que será usado como principal (no

exemplo o Relógio COM Despertador) e, em seguida, faça Project > Set as Top-Level Entity.

15.5 O nome do meu projeto é Projetão da Moçada e não compila.

Por quê?

Evite espaços e caracteres latinos (tais como “ç” e “ã”) tanto no nome das pastas onde os

projetos serão gravados quanto no nome dos arquivos e pinos de entrada e de sáıda. Existem

programas que aceitam, outros não. A t́ıtulo de observação, o Quartusr II aceita letras

maiúsculas.

42

15.6 Tenho 200 entradas que ficam em 1 sempre, mais 200 que sem-

pre ficam em 0. Quando coloco no Waveform fica uma ba-

gunça. Já que eu não tenho que mudá-las sempre, tem algo

mais prático a ser feito?

Abra a janela de seleção de componentes (duplo clique na área de trabalho), digite Vcc

ou Gnd. No primeiro caso, o bloco correspondente representa ńıvel lógico ALTO e, no segundo,

ńıvel lógico BAIXO. Esses blocos são interessantes de serem usados quando um determinado

sinal de algum bloco deve ser desabilitado permanentemente. Por exemplo, um sinal CLRN

representa uma porta de Clear que é acionada em ńıvel BAIXO. Ligá-la ao Vcc garante que

ela nunca será acionada.

15.7 Fui no TTL HandBook e justamente a página que eu queria

não estava lá. O que faço?

Acesse o site http://www.alldatasheet.com/ e procure pelo datasheet do componente

que você quer estudar. Evite imprimir. Salve em um pendrive e leve com você para o labora-

tório. Copie no computador e use quando for necessário.

15.8 Sumiram as ferramentas do Waveform.

Faça Tools > Customize Waveform Editor.

15.9 No simulador, os pinos não aparecem.

Compile o arquivo e, em seguida, insira os pinos. Use o procedimento apresentado na

Seção 13.

15.10 Simulei anteriormente, inseri e tirei alguns pinos, quero simu-

lar novamente. Compilo e quando abro o simulador só tenho

pinos antigos. Que fazer?

Apague os pinos que você apagou no esquemático e insira os novos. Analise o procedi-

mento apresentado Seção 13.

15.11 Sumiram as ferramentas da área de trabalho.

Faça Tools > Customize Block Editor.

43

15.12 Estou na tela de associação de pinos com endereços, para

gravação. O problema é que minha tela não mostra, na parte

de baixo, os pinos do meu projeto.

Compile o projeto e abra a tela de associação novamente. Caso o local onde os pinos

deveriam aparecer simplesmente não está lá, ainda nessa tela siga o caminho: View > All Pins

List. Como dito na Seção 7 é muito mais simples se a padronização de nomenclatura dos pinos

apresentada no manual da placa seja mantida. Assim, pode-se importar o assignment dos pinos.

15.13 Estou na tela de associação de pinos com endereços, para

gravação. O problema é que minha tela não mostra, ao lado

dos pinos do meu projeto, a coluna Location.

Clique com o botão direito nessa “tabela” e vá para a opção Customize Columns. Insira

Location na sua tabela. Novamente, como dito na Seção 7 é muito mais simples se a padroniza-

ção de nomenclatura dos pinos apresentada no manual da placa seja mantida. Assim, pode-se

importar o assignment dos pinos.

15.14 Estou na tela de gravação mas não consigo gravar.

Releia a Seção 14 e analise com atenção a Figura34.

15.15 Usei o clock da placa e todos os meus LEDs ficam acesos.

As frequências dos osciladores existentes na placa DE1 e dispońıveis aos usuários são

de 50 MHz e 27 MHz. O olho humano não identifica oscilações maiores do que 20 ou 30 Hz.

O ideal é dividir a frequência dos osciladores utilizando o componente da biblioteca padrão do

Quartusr II denominado freqdiv. Em algumas situações, pode-se construir um divisor de

frequência com flip-flops tipo T ou contadores binários.

Aconselha-se que a simulação temporal (análise das formas de onda) sempre sejam ge-

radas. Um divisor de frequência mal projetado pode invalidar o correto funcionamento do

circuito.

15.16 Por que ao renomear um pino de entrada com o nome CLOCK 27,

o sistema não o associa ao pino do relógio de 27 MHz do kit?

O kit DE1 possui dois relógios de 27 MHz. Eles são referenciados pelos nomes CLOCK 27[0]

e CLOCK 27[1].

44

Referências

Altera (2010a), ‘Altera Corporation’, Página principal: http://www.altera.com.

Altera (2010b), ‘Altera Corporation - Cyclone II FPGAs at Cost That Rivals ASICs’, Página

principal de documentação: http://www.altera.com/products/devices/cyclone2/

cy2-index.jsp.

Altera (2010c), ‘Altera Corporation - Debugging with the SignalTap II Logic Analyzer’, Pá-

gina de documentação: http://www.altera.com/literature/hb/qts/qts_qii53009.

pdf?GSA_pos=6&WT.oss_r=1&WT.oss=SignalTap%20II.

Altera (2010d), ‘Altera Corporation - Intellectual Property & Reference Designs’, Página central

de documentação: http://www.altera.com/products/ip/ipm-index.html.

Altera (2010e), ‘Altera Corporation - Nios II Embedded Design Suite Support’, Página

central de documentação: http://www.altera.com/support/ip/processors/nios2/

ips-nios2_support.html.

Altera (2010f), ‘Altera Corporation - Quartus II Design Software’, Página de documentação:

http://www.altera.com/support/software/sof-quartus.html.

Altera e Terasic (2010), ‘Altera Corporation and Terasic Technologies’, Página principal de

documentação para o kit DE1: http://www.terasic.com.tw/cgi-bin/page/archive.

pl?Language=English&CategoryNo=53&No=83&PartNo=4.

der Spiegel, J. V. (2010), ‘VHDL Tutorial’, Página eletrônica: http://www.seas.upenn.edu/

~ese201/vhdl/vhdl_primer.html. Department of Electrical and Systems Engineering,

University of Pennsylvania.

IEEE-VHDL (2009), ‘IEEE Standard VHDL Language Reference Manual’, IEEE Std 1076-2008

(Revision of IEEE Std 1076-2002) pp. c1 – 626.

Nicolato, F. (2002), Arquitetura de Hardware para a Extração em Tempo Real de Caracteŕıs-

ticas de Múltiplos Objetos em Imagens de Vı́deo: Classificação de Cores e Localização de

Centróides, Dissertação de Mestrado, FEEC - UNICAMP.

Pedroni, V. A. (2008), Digital Electronics and Design with VHDL, Elsevier - Morgan Kaufmann

Publishers.

Perry, D. (2002), VHDL: Programming by Example, 4a. edição, McGraw-Hill Professional.

Tocci, R. J., Widmer, N. S. e Moss, G. L. (2008), Sistemas Digitais: Prinćıpios e Aplicações,

Person - Prentice Hall.

45

Wu, S.-T. (2001), Notas de aula do curco “EA772 - Circuitos Lógicos”. Dispońıvel em http:

//www.dca.fee.unicamp.br/courses/EA772/2s2001/., Relatório Técnico, Faculdade de

engenharia Elétrica e de Computação - UNICAMP.

46

