Cloth Modeling with a Discrete Cosserat Surface

Matias Costa, Mario Camillo, Wu, Shin-Ting

{ting,mcamillo,matiasrc]@dca.fee.unicamp.br

DCA - School of Electrical and Computer Engineering State University of Campinas (Unicamp)

Motivation: A sheet based non-data-driven physically-based cloth simulation model on GPU.

Proposal: To apply the mechanical equilibrium equation with the internal potential energy term estimated using the Cosserat surface theory [1].

Sample surface **r(u,v)** on instant t₀

$$\mu \frac{\partial^2 \mathbf{r}(t)}{\partial t^2} + \varrho \frac{\partial \mathbf{r}(t)}{\partial t} + \mathbf{K}(\mathbf{r}, t)\mathbf{r}(t) = \mu \mathbf{F}(\mathbf{r}, t)$$

$$K(\mathbf{r},t)\mathbf{r}(t) \approx \mu \frac{\partial \mathcal{A}(\mathbf{r},t)}{\partial \mathbf{r}(t)} = \frac{\partial \mathcal{A}(\mathbf{r},t)}{\partial \varepsilon(t)} + \frac{\partial \mathcal{A}(\mathbf{r},t)}{\partial \kappa(t)}$$

$$\mathcal{A}(\mathbf{r},t) = \Phi \varepsilon_{\alpha\beta}(t) \varepsilon_{\gamma\delta}(t) + \Psi \kappa_{\alpha\beta}(t) \kappa_{\gamma\delta}(t) + \Theta \varepsilon_{\alpha\beta}(t) \kappa_{\gamma\delta}(t)$$

 Φ, Ψ, Θ are material and initial state geometry dependent constants

$$\kappa_{\alpha\beta}(t) = -\left(b_{\alpha\beta}(t) - b_{\alpha\beta}(t_0)\right) \quad \varepsilon_{\alpha\beta}(t) = \frac{1}{2}\left(a_{\alpha\beta}(t) - a_{\alpha\beta}(t_0)\right)$$
and is the metric tensor and b is the curvature tensor.

 $a_{lphaeta}$ is the metric tensor and $b_{lphaeta}$ is the curvature tensor

 $t_n = t_0 + n\Delta t$

Problems:

- Applying the Cosserat model on meshes of arbitrary topology
- Representation of these meshes on GPU [2]
- Boundary conditions for the numerical solution
- Parallelism of numerical resolution

Implementation: per vertex processing

Calculate basis ${a_1(t_0),a_2(t_0)},$ estimate $a_{\alpha\beta}(t_0)$ and $b_{\alpha\beta}(t_0)$ and store the values

setup

Calculate basis ${a_1(t),a_2(t)}$

Estimate new

positions

Estimate $a_{\alpha\beta}(t)$ and partial derivatives

Calculate internal forces

Implemented on GPU

Estimate $b_{\alpha\beta}(t)$

Compute $\varepsilon(\boldsymbol{r},t)$ and $\kappa(\mathbf{r},t)$ and calculate $\mathcal{A}(\mathbf{r},t)$

Results: Samples of the animation of a flat square sheet and the average execution times of the metric and the curvature tensors on CPU and GPU for different mesh sizes.

elastic behavior (a) under a pull-up force in the middle and (b) after removing the force

draping behavior of a less elastic cloth fabric under gravitational force

Avg GPU time w/ Mesh Avg CPU Gain time (ms) copy overhead (ms) size 1.7965 2.1704 20x40 0.8277x7.4238 5.2288 40x80 1.4198x 80x160 29.7666 15.0957 1.9719x

[1] A. E. Green, P. Naghdi, and W. Wainwright, "A general theory of a cosserat surface", Archive for Rational Mechanics and Analysis, vol. 20, 1965. **References:** [2] W.-W. Feng, Y. Yu, and B.-U. Kim, "A deformation transformer for real-time cloth animation", ACM Trans. Graph., vol 29, 4, 2010.

Further information: http://www.dca.fee.unicamp.br/projects/desmo