
Accessing CUDA features in the OpenGL rendering pipeline: 
A case study using N-Body simulation

Introduction: Since their introduction
to the consumer digital graphics
market in the 1990s the GPUs
(Graphics Processing Units) have
evolved from specialized graphics
processors to general purpose
computing ones.
In general, for graphics rendering
applications it is recommended to
access 3D graphics specialized
hardware through the open standard
OpenGL API, and for general purpose
programming the CUDA or the
OpenCL APIs have been the preferred
ones. The former abstracts the GPU
architecture as a rendering pipeline,
while the latter exposes more directly
the underlying hardware features.
Several studies however show that
using the OpenGL API even for
compute heavy problems yield better
performance [1,2,3,4].

References: [1] M. Fratarcangeli, in Game Engine Gems 2, 2011, ch. 22, pp. 365–378;
[2] T. I. Vassilev, in CompSysTech’11. NewYork,NY, USA: ACM,2011,pp.204–209;
[3] J. Hunz, Available: https://kola.opus.hbznrw.de/files/786/JochenHunzBachelorThesis.pdf ;
[4] F. Sans and R. Carmona, in XLII CLEI, Oct 2016, pp. 1–11;.

M. S. Camillo, S.-T. Wu
Computer Engineering and Industrial Automation Dept., School of Electrical and Computer Engineering, Unicamp

Comparative Analysis:
Basis of comparison: A well known and optimized CUDA implementation of an N-
Body simulation available in the Nvidia CUDA SDK (Figures (a) and (b))

Compared solutions: Three different OpenGL implementations (Figure (c)) to
approach the execution pattern in CUDA:
•Geometry shader: streaming pairs of bodies to try to maximize parallelism
•Tessellation shader: access to shared memory as the tessellation shader pre-loads
its patch data into it.
•Tesselation Instancing: Organize memory access and execution flow. Most similar
pattern to CUDA implementation (Figure (d))

PAPER 
ID 30

Conclusion: Memory accesses are the major performace bottleneck. OpenGL features improving these accesses lead to
better performance. Applying our findings in the implementation of a memory-intense, but highly parallelizable, N-body simulation,
we got an OpenGL-based implementation that rivals a well optimized CUDA-based version. We believe that these findings are
useful for devising new performance optimization strategies for the applications developed with the OpenGL API. Nevertheless, to
fully benefit from the hardware resources we should deepen our understanding of some unexpected behavior patterns by profiling
our shaders with an appropriate tool such as Nvidia Nsight.

CUDA x OpenGL: We found that the geometry and the tessellation features do quickly degrade even with small numbers of bodies,
while CUDA and tessellation with instancing maintain a good performance even when the number of bodies grows.
Tessellation with instancing performance drops for large number of bodies compared to CUDA. This occurs because in the former we
have 32 bodies per patch and in the latter we have 256 bodies per block. When comparing both implementations with the same
number of bodies per processing group we obtained quite similar curves. The limitation of the number of vertices in each patch along
the OpenGL rendering pipeline impedes it achieving the same performance as CUDA. Empirically, we come to the following
conjecture: use of geometry shader may improve the execution parallelism; tesselation shader provide access to shared memory;
and instanced rendering may optimize memory access pattern.

Question: What is the potential of a
series of new graphics features
available in OpenGL 4.5 in closing the
performance gaps between an
OpenGL-based rendering pipeline and
an optimized CUDA-based
implementation?

(b) Execution pattern in CUDA

(d) Execution pattern in tessellation with 
instancing

(e) Performance comparison of all 4 algorithms
(f) Performance comparison on latest Nvidia 

GPU architectures

(g) Performance comparison CUDA and 
Tessellation with instancing with blocksize=32

(c) Data flow for OpenGL implementations

(a) Data flow for CUDA implementation


