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ABSTRACT
We present an efficient algorithm for crude registration of two partially overlapping range images. The central
focus of our work is how to filter out the wrong pairs efficiently in order to reduce the search space. Motivated by
the availability of robust and efficient mesh simplification algorithms, such as the QSLIM software package, which
preserve the main characteristics of the surface shape, we propose to find a good initial transformation estimate on
the basis of the vertices of simplified meshes, instead of the original dense sets of range data. Promising results,
that make the iterative closest point matching procedure converges to a correct final alignment, are provided.
Keywords Crude registration, Range Images.

1 INTRODUCTION
A range image is a two-dimensional grid of depth mea-
surements of a sampling of surface points presented in
a scene. As the depth of each imaged point in a given
range image is measured from a plane or a single point
on the range sensor that captured it, the coordinates of
the acquired data are usually represented in terms of the
position of this reference. Nevertheless, because of the
three-dimensionality of most of objects of interest, this
acquisition procedure cannot completely cover an ob-
ject. Thus, for getting a 3D data model, the capture of
several images acquired from different points of view is
necessary, as illustrate Figures 1 and 2, and these im-
ages may need to be calibrated to a common (global)
reference system in a process called views alignment or
registration.

angel1 angel2 Both
Figure 1: Range images of an angel.
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dragon1 dragon2 Both
Figure 2: Range images of a dragon.

The registration problem of two partially overlap-
ping range images, S-image and D-image, may be split-
ted into two coupling problems: correspondence and
pose [BMW05a]. A correspondence refers to find out
the points or features from S- and D-images that are
matchable, and the pose problem consists in determin-
ing the rigid transformation T (rotation R and transla-
tion t) that may need to be applied on the range data
to overlap the matchable points in a common reference
system.

Mathematically, for finding the rigid transformation
T , represented by a 4×4 matrix, at least three matchable
pairs (pi,qi) are required, being pi samples of S-image
and qi samples of D-image. These pairs must satisfy the
equation qi = T pi. If N pairs are known, N > 3, the reg-
istration problem is, usually, solved by the least squared
method min f where f = 1

N ∑N
i=1 ‖qi −T pi‖. However,

the matchable points are, in most cases, not known. We
must estimate them, evaluate the estimated matchable
points on the basis of a fitness error criterion, and carry
the process out iteratively, until a solution with a fitness
error under the pre-specified tolerance is achieved. Fig-
ure 3 shows the registered images of the image pairs
presented in Figures 1 and 2.

With respect to the initial estimate, we may classify
the existing automatic registration algorithms into two



groups: a one-step and a two-step technique. A one-
step method aims at obtaining a precise transformation
T en masse, taking all potential matchable points into
consideration. Thus, the problem is dealt with as a 6-
dimensional optimization problem. Some researchers
apply the genetic algorithm (GA) to find its global min-
imum, which is theoretically the best solution [KA96,
CR02]. To overcome the low convergence of such al-
gorithms, a hybrid genetic algorithm (HGA) that com-
bines the GAs with a numerical method, such as the
Quasi-Newton (hill climbing) one is proposed [RP96].
Silva et al. also adopt this approach to get an accurate
registration [LK05]. Despite of several efforts, a one-
step procedure is still computationally expansive.

Unregistered Registered
Figure 3: Crude registration of angel and dragon’s im-
ages.

The basic idea underpinning a two-step method is
to handle the problem in two stages: firstly the im-
ages are matched from their intrinsic features, then
they are finely tuned in order to minimize the point-
to-point distance, or the extrinsic, errors. These two
steps are, respectively, called the crude registration and
the fine registration. From numerical point-of-view,
the crude registration, on the basis of the complete
collection of samples, provides a good initial estimate
T0 to the fine registration. This, in its turn, attempts
to iteratively adjust the transformation matrix, in or-
der to minimize the mean squared errors between the
supposed correspondences. The iterative closest point
(ICP) [BM92, CM92] and its variants are examples of
this category of procedures [RL01].

While the ICP algorithm is recognized as an efficient
algorithm for the second step, a robust technique for
obtaining T0 is still pursued by the researchers [WG02,
BMW05a]. As detailed in Section 2, the crude reg-
istration algorithms basically distinguish in the intrin-
sic geometric properties that they use for comparison

purposes and in the size of the data that they process
for getting plausible local correspondences. If no land-
marks are provided, it is still a challenging problem how
to automatically and efficiently extract from the dense
data sets the information that is effectively essential for
correspondences.

In this paper, we propose to reduce the size of data
sets by simplifying the S- and D-images into S- and D-
meshes with much fewer triangles. Figure 1.(b) illus-
trates a simplified mesh of the original data set depicted
in Figure 1.(a). Though the number of vertices is drasti-
cally reduced from 24540 to 200, the vicinity of all the
vertices of the simplified mesh keeps the property to be
locally alike. Hence, we conjecture that a simplified
mesh that preserves the global geometric characteristic
of the original data suffices for a coarse registration.

(a) (b)
Figure 4: Simplification of a symmetric mesh.

Our proposal is founded on the fact that for crude
registration only the geometrically distinguishing fea-
tures of the input images are of interest. Hence, we
may “blur” the local geometrical properties of the in-
put image in such a way that only globally relevant ge-
ometric characteristics are kept. From the remaining
samples we may get a transformation matrix T0 that can
bring S- and D-images close enough and that can en-
sure the convergence of any ICP-like algorithm. We
should, therefore, elaborate a mesh simplification algo-
rithm that delivers faithful approximations, namely the
S- and D-meshes, to these dense data.

The S- and D-meshes may contain distinct number
of vertices and possess distinct topology. Comparison
strategies, such as the spin-image and the geometric his-
togram matching, are not applicable in our case. In
principle, we may adopt the random sample consen-
sus based data aligned rigidity constrained exhaustive
search schema. Nevertheless, after simplification, the
size of our input data for registration becomes much
smaller and we may exhaustively look for appropriate
matchable structures in the D-mesh for each structure in
the S-mesh. This increases the confidence of our search
procedure.

Experimentally, we found that the mesh simplifica-
tion procedure in the QSLIM software package [GP97]
satisfies our simplification requirements. A brief de-
scription of the algorithm is given in Section 3. The
remaining issue is how to construct faithful structure
that lead us to a good estimate for T0. In Section 4, we
provide the geometric metrics that we use to automati-
cally construct the matching structure in the S-mesh and



the procedure that we adopt to find a matchable one in
the D-mesh, and consequently, the required alignment
transformation. In Section 5 the results that validate
our proposal are presented. Finally, in section 6 further
work is discussed.

2 RELATED WORKS
The algorithms for crude registration work either on the
basis of the geometric measurements of the whole sam-
ple points with regard to a small set of points, or on the
basis of the geometrical characteristics of the vicinity of
this small set of points. As far as we know, they work
on the dense original range data.

In Spin-image matching (SIM) procedure, a small
number of oriented points is randomly chosen from
S-image [AM99]. From each of those points, a spin-
image is generated, consisting of a 2D-histogram con-
structed by the radial distance (to the surface normal at
the oriented point) and the axial distance (to the tangent
plane at the point) of all other points. Then, spin-images
associated to distinct points of the D-image are com-
pared with a few set of the previously built spin-images
for constructing matched pairs and estimating transfor-
mation candidates. False transformations are pruned by
the ICP algorithm. According to the careful compar-
isons carried out by Planitz et al. [BMW05a], this tech-
nique may take a long time and require excessive stor-
age for high resolution surfaces. Moreover, it may fail
when the models are axis-symmetric [BMW05b]. Our
proposed method not only has less storage complexity
but is suitable for axis-symmetric models, as well. We
will show that our procedure can successfully register
a pair of the axis-symmetric hub’s range data presented
in Figure 5.

hub1 hub2 Both
Figure 5: A pair of hub’s range images

Instead of histograms constructed by the radial and
the axial distances, Geometric histogram matching
(GHM) method is based on a few set of histograms
from the triangular mesh of the S-image, each of which
represents the relative angle between the normal of a
given facet fi and all other surrounding facets, within
a predefined distance from the plane in which fi lies
to all points of the surrounding facets [AFWR98]. A
match for facet fi is determined by finding the best
match between its histograms and the histograms
representing the facets of the triangular mesh of the
D-image. The Random Sample Consensus (RANSAC)
algorithm [MR81] is used to compute the best orien-
tation and the best translation for a plausibly correct

final alignment. It was verified that GHM is unsuit-
able for surfaces with few distinct surface curvature
variations [BMW05a]. In this work, we show that
our proposed method also works well on models
with smooth curvature variations, such as the pairs of
images in Figures 6 and 7. In the both cases abrupt
curvature transitions are concentrated in a very small
region.

club1 club2 Both
Figure 6: Ranges images of a club.

banana1 banana2 Both
Figure 7: Ranges images of a banana.

RANSAC-based DARCES (RBD) is an acronym for
Random Sample Consensus based Data Aligned Rigid-
ity Constrained Exhaustive Search [CHC99]. Differ-
ently from the SIM and the GHM techniques, it does
not require the computation of the geometrical charac-
teristics of the whole sample points. In each iteration
of the RBD algorithm, a sample point s1 is randomly
chosen from S–image, which together with two nearby
non-collinear sample points s2 and s3 builds a triangu-
lar structure L. Each sample in D-image is then exhaus-
tively tested aiming to find a triangle that is matchable
to L. For the first point s1, any point of D-image is con-
sidered as a potentially matchable point m1. The search
region for the corresponding point m2 to s2 can be lim-
ited to the sphere of radius d12 centered at m1 where d12
is the distance between s1 and s2. And the search region
for the corresponding point m3 to s3 can be further lim-
ited to the intersection of two spheres, one centered at
m1 with radius d13 and the other centered at m2 with ra-
dius d23. For evaluating the quality of alignment trans-
formation, the authors use a subsample of the original
data. Although it works for a wide variety of surfaces, it
may take a long time for finding a good initial estimate
that converges to a correct alignment. Instead of a pla-
nar structure, we propose to use a spatial structure. Be-
cause a spatial structure is more distinguishable, fewer
matchable structures are selected, which makes feasible
to test all of them for getting the best one. Although the
modified RBD algorithm implemented by Planitz et al.
successfully matches the DINO surface pair presented



in Figure 8 [BMW05a], the outcome of our proposed
algorithm is quantitatively and qualitatively better.

dino1 dino2 Both
Figure 8: Ranges images of a dinosaur.

In the Intrinsic curve matching (ICM) procedure,
curves with zero mean curvature are extracted from
range images [KPH02]. For each individual range im-
age, all possible pairings between curves are estab-
lished. In each pairing, the shortest line segment (con-
nector) is determined in S-image and its length is used
for finding the best correspondence in D-image. The
quality of the transformation is evaluated by the num-
ber of feature alignments. According to Planitz et
al. [BMW05a], it works better on surfaces with smooth
curvature variations than those with sharp edges. Thus,
it fails to perform a good alignment for the pair of im-
ages of an object with hard edges, such as the images in
Figure 9. Contrary to the ICM algorithm, our proposed
model does not suffer from this restriction.

machine1 machine2 Both
Figure 9: A pair of a machine’s images.

3 DATA SIMPLIFICATION
To be self-contained, we provide a brief description of
the efficient simplification algorithm implemented in
the QSLIM package. It uses iterative edge contractions
on the basis of quadric errors associated to each vertex
v.

The squared distance of v to an adjacent face k, rep-
resented by nk · v = d, may be expressed as

D2(v) = (nt
kv+d)2 = (vt +d)(nt

kv+d)

= vt(nknt
k)v+2dnt

kv+d2 (1)

which may be written in a quadratic form

Q(v) = vtAv+2btv+ c = D2(v)

by making A = nknt
k, b = dnk, c = d2. Q can be defined

as a triple Q = (A,b,c) where A is a 3 × 3 matrix, b is
a 3-vector, and c is a scalar. The addition of quadrics
is performed componentwise: Qi(v) + Q j(v) = (Qi +
Q j)(v) where (Qi +Q j) = (Ai +A j,bi +b j,ci +c j). The

quadric error E associated to v is given in terms of the
sum of squared distance to all its adjacent faces

E(v) = ∑
k

D2
k(v) = ∑

k
Qk(v) = Q(v).

Observe that the initial quadric error estimate for each
vertex is 0, since it lies in the planes of all its adjacent
faces.

Let ei j be edges of a triangular mesh whose extreme
vertices are vi and v j and Qi and Q j be their associated
quadrics, respectively. In each iteration of the simpli-
fication algorithm, the optimal contraction v for each
edge is computed (Figure 10), such that the quadric
error of its substitute v, Q(v) = Qi(v) + Q j(v) has the
minimal quadric error. Since Q(v) is quadratic, finding
its minimum is a linear problem. The minimum occurs
where ∂Q/∂x = ∂Q/∂y = ∂Q/∂ z = 0

∆Q(v) = 2Av+2b = 0

Figure 10: Edge contraction

Assuming that A is invertible, one gets v = −A−1b.
Among all the computed quadric errors, the edge that
presents the lowest quadric error is selected to be con-
tracted and the quadric errors of the adjacent vertices
are updated. The process is repeated, until the desired
level of simplification is reached.

This simplification process satisfies our filtering re-
quirement, which is to “blur” the geometric properties,
or to cluster the samples into a vertex, such that the
global prominent shapes are preserved, that is, a quadric
error of the substitute is less than the specified toler-
ance.

Figure 3 presents the simplified mesh of a face with
several prominent shapes. Observe that, even with a
reduced number of vertices, from 3717 to 200, we may
still distinguish the nose, eye, chin, cheek, and the hair’s
comb.

Figure 11: Simplification of a mesh with prominent fea-
tures.

4 CRUDE REGISTRATION
Using a pair of simplified meshes to determine a possi-
ble alignment transformation reduces the search space
for potential correspondences. Hence, it is expected



that the efficiency of the process is improved. Now,
it remains to show how to derive the transformation
matrix T0 from the two simplified meshes. We may
adopt either a global optimization method, that takes
into consideration the complete collection of vertices
of the simplified meshes and involves the solution of a
larger system of equations, or a locally aware approach
by defining spatial structures with fewer vertices in the
S-mesh and looking exhaustively its pair in the D-mesh.
Aiming at efficiency and robustness, we present in this
section a solution for the second approach. The basic
idea is to explore the sparsity of the simplified meshes
and perform a computationally efficient global search
among all of their vertices.

4.1 Defining Matching Structures
Once any isometric transformation in ℜ3 may be char-
acterized by three linearly independent vectors, we pro-
pose to use a spatial structure for pairing the vertices
of S- and D-meshes: a vertex v of S-mesh, together
with three of 1-neighborhood adjacent vertices (Fig-
ure 12(b)).

v

v1

v2

v3

v4

v6

v5

v

v2

v3

v4

v6

v5

v1

(a) (b)

Figure 12: Spatial structure extracted from a 1-
neighborhood

Instead of randomly selecting a point in S-mesh for
performing the matching procedure, we use all the ver-
tices whose associated solid angle is above a threshold.
In our implementation, it is fixed in 800. This ensures
that no potential matchable pair is missed. For simplic-
ity, we approximate the solid angle of a vertex v by the
median of the angles that all of its incident edges build
with its normal vector.

For obtaining the normal vector at v, we determine
the orthogonal regression plane which minimizes
the axial distance of the neighboring vertices of v to
it [I.S02]. This regression plane is a good approxima-
tion to the tangent plane of the S-mesh at v. The vector
perpendicular to this plane is, hence, the normal vector
of S-mesh at v. Let vi, i = 1, . . . ,m, be the m vertices
of the 1-neighborhood of v. The covariance matrix
3× 3 in v is defined as C = 1

m ∑m
i=1(vi − v)(vi − v)t ,

where v = 1
m ∑m

i=1 vi is the mean position vector.
The two eigenvectors, corresponding to the largest
eigenvalues, define the regression plane and the third
eigenvector is, consequently, its normal vector.

It is worth remarking that, differently from the previ-
ous crude registration works, our structure encodes two
important intrinsic geometric properties of the vertex v:

area, approximated by the distances between the adja-
cent vertices, and curvature, approximated by the an-
gle between the normal vector and the adjacent edges.
Hence, we believe that our structure is much more dis-
criminant, in the sense that the number of possible pair-
ings is smaller, without degrading the matching quality.

4.2 Pairwise Local Matching
After the simplification procedure, the number of re-
maining vertices in D-mesh is small enough that we
can exhaustively look for all possible pairings. It is
worth remarking that the QSLIM simplification proce-
dure ensures that regions of similar geometric charac-
teristics are similarly contracted, but does not ensure
that connectivity of the edges in these regions is the
same. To circumvent this problem, we consider for
each vertex v in D-mesh all the sample points in D-
image that lie in its 4-neighborhood, when we attempt
to find the same tetrahedral structure of S-mesh in the
D-image (Figure 13). Our search procedure follows the
same search space reducing principle of the RBD pro-
cedure described in section 1.

PSfrag replacements
v

Figure 13: Matchable sample points in D-image.

Let si, i = 1..4 be the vertices of a tetrahedral structure
of S-mesh and let di j be the distance between the vertex
si and vertex s j. The corresponding sample point m1 of
s1 must be in the 4-neighborhood of the s′1s correspon-
dence in D-image. The correspondences m2 and m3 to
s2 and s3, respectively, are obtained in the same way as
in the RBD algorithm. And the m4, that corresponds
to s4, must be the intersection of three spheres: the first
centered in m1 and with radius d14, the second with cen-
ter in m2 and radius d24 and the later, centered in m3 and
with radius d34. Figure 14 illustrates the search spaces
for the four correspondences in D-image.

s3

s2

s1

d12
d13

d23

s4

C12

m1 d12 m1 d13

m2
d23

C13

C23

m1 d14

m2
d24

C14

C24

d34 m3

Figure 14: Pairwise matching.

If the correspondences of si are found, we further
compare their solid angles. If they are approximately
the same, then we consider that (s1,s2,s3,s4) and
(m1,m2,m3,m4) are paired off.



Images Planar Struct. Spatial Struct. % Reduction

Figure 1 11,182,373 1,927,148 82,77%
Figure 2 51,661,440 8,739,339 83,08%

Figure 15 35,402,841 3,242,086 90,84%
Figure 5 125,661,822 3,303,893 97,37%
Figure 6 15,237,324 289,286 98,10%
Figure 7 12,190,662 1,157,796 90,50%
Figure 8 9,253,616 1,391,281 84,97%
Figure 9 24,001,344 909,067 96,21%

Table 1: Planar × spatial efficiency comparison

Images Local Pairings % Filtering Iterations
ICP

Figure 1 1,927,148 92.38% 6
Figure 2 8,739,339 84.42% 7

Figure 15 3,242,086 73.29% 8
Figure 5 3,303,893 83.32% 7
Figure 6 289,286 89.41% 5
Figure 7 1,157,796 92.72% 4
Figure 8 1,391,281 93.08% 5
Figure 9 909,067 94.00% 8

Table 2: Similarity and visibility efficiency.

To support our remark in Section 4.1, we compared
experimentally the filtering efficiency of a planar struc-
ture used in the RBD procedure [CHC99] and our pro-
posed spatial structure. Table 1 summarizes in the col-
umn 2 and 3, respectively, the number of matchable
samples for planar and spatial structures. Observe that
the spatial one presents higher filtering efficiency in all
of cases.

4.3 Additional Filterings
Before estimating the transformation T that aligns all
the range data, we may still filter out some wrong lo-
cal correspondences that we obtained from the structure
matching. There are two trivial tests: neighborhood
similarity and visibility tests. In the former, we deter-
mine the distance of the aligned points in the vicinity
of a matched pair. If it is greater than a pre-specified
tolerance, we may discard the correspondence. The
latter is based on the fact that if one triangle is on
overlapping region, it is visible from the S−viewpoint,
then after alignment it must also be visible from the
D−viewpoint. We apply the visibility test to all 1-
neighborhood faces of the locally pairing vertices. If
less than 50% of faces pass the test, the correspondence
is discarded. Table 2 shows the percentage of the num-
ber of matchable points that is reduced after the trivial
filtering for the pairs of images presented in this pa-
per. The column Local Pairings provides the number of
matchable tetrahedral structures before filtering and the
column % Filtering shows the reduction ratio, after fil-
tering, which is in average 87.82%.

5 EXPERIMENTAL RESULTS
In this section we present some results that corroborate
our conjecture: faithful approximations to dense range
images may be used for finding a good correspondence
estimate for two partially overlapping range data sets.
We apply our algorithm on the data that are similar to
the ones employed by Planitz et al. for analyzing and
comparing the most known surface correspondence al-
gorithms, namely the spin-image (SIM), the geomet-
ric histogram (GHM), the RANSAC-based DARCES
(RBD), and the intrinsic curve (ICM) matching proce-
dures. These data vary in acquisition, size, level of de-
tail, and geometric characteristics [BMW05a].

The ANGEL surface pair (Figure 1) and the DINO
surface pair (Figure 8) are the same that Planitz et al.
used in their work. We also include the FROG surface
pair from the Ohio State University repository [OSU]
that are 600 apart from each other (Figure 15) and the
DRAGON surface pair (Figure 2), scanned with a laser
triangulation Cyberware 3030 MS scanner [Sta] and of
high level of details.

frog1 frog2 Both
Figure 15: Range images of a frog.

The rest of surface pairs have been obtained from the
Sttugart repository [Stt]. The CLUB surface pair (Fig-
ure 6) was also captured by a Cyberware scanner. It has
abrupt curvature variations concentrated in a very small
region. The BANANA surface pair (Figure 7) and the
MACHINE image pair (Figure 9) are synthetic images
from the 3D Cafe website [3dc]. The BANANA images
also contain very smooth curvature variations, while the
MACHINE surface has sharp edges and planar facets.

Firstly, we apply the QSLIM simplification algorithm
in the original data samples, whose number is given in
the column Samples of Table 3. The number of ver-
tices of the outcomes are listed in the column Vertices.
From these outcomes, our proposed algorithm only se-
lects a few number of tetrahedral structures, as shows
the column Structures. The reduction ratio is more than
99.5%. Despite this drastic reduction, our algorithm
is able to deliver alignment matrices for the seven sur-
face pairs that make the ICP algorithm converges. Fig-
ure 16(a) presents the simplified meshes output by the
QSLIM algorithm and Figure 16(b), the visual results
of our proposed procedure. These results show that sat-
isfactory crude registration between all the surface pairs
is achieved.

According to Planitz et al., we may evaluate quanti-
tatively the performance of our proposal by verifying



Images Samples Vertices Structures
angel1 14812 416 54
angel2 10632 402 83

bluedino1 20494 422 33
bluedino2 16783 435 24

frog1 9640 297 90
frog2 8618 374 56
hub1 72099 1039 58
hub2 71772 1039 60

banana1 21312 542 26
banana2 22071 521 24

club1 31954 516 22
club2 32746 514 25

machine1 28086 437 110
machine2 33884 552 86
dragon1 41841 685 44
dragon2 34836 821 80

Table 3: Reduction of samples.

whether its outcomes lead to correct convergence of the
ICP procedure. We used the Scanalyze system, devel-
oped in the Stanford University [Sca], for evaluating
our results. Visually, the outcomes from the Scanalyze
is almost indistinguishable from the images shown in
Figure 16(b). The column Iterations ICP of Table 2 pro-
vides the number of iterations that the ICP algorithm
needed to converge to the optimal solution.

6 CONCLUDING REMARKS
In this paper we present a technique for an automatic
registration of two partially overlapping range images
on the basis of their simplified triangular meshes. The
most important contribution of our work for crude reg-
istrations is to use a faithful approximation of the dense
range data. Among the advantages of this approach, we
may list: (1) drastic reduction of the input data, without
missing the relevant features, (2) easiness in construct-
ing discriminant structures that integrate two intrinsic
properties: distance and curvature, and (3) simplicity
in defining additional trivial discard rules for pruning
false transformations. As further work, we would like
to evaluate the sensitive of our method with regard to
the threshold of the solid angle and to reconstruct a
complete 3D model from the registered range data.
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Figure 16: Crude registration results


