What You See Is What You Snap:
Snapping to Geometry Deformed on the GPU

Harlen C. Batagelo

Wau, Shin-Ting*

State University of Campinas

Abstract

We present a simple yet effective snapping technique for constrain-
ing the motion of the cursor of an input device to the surface of 3D
models whose geometry is arbitrarily deformed by a programma-
ble hardware fragment and vertex processor. The technique works
in image space and thus snaps the cursor to the geometry actually
rendered instead of the geometry originally submitted to the ren-
dering pipeline. We also present a method to establish a correspon-
dence between snapped geometry in image space and object space,
and an efficiency improvement based on the control of frequency of
frame buffer accesses. Performance tests are conducted and com-
pared against the standard picking and snapping algorithm used by
the D3DX library of the Microsoft Direct3D API. We conclude by
emphasizing the feasibility of our algorithm when facing the new
advances of the graphics hardware for deforming geometry on the
GPU.

CR Categories: 1.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction Techniques;

Keywords: constraints, direct manipulation, programmable
graphics hardware

1 Introduction

Cursor snapping is a widely used direct manipulation technique that
provides precise cursor positioning by constraining the motion of
the associated input device towards a geometric element. Usually,
it consists of restricting the motion of the cursor to the shape of
geometries such as grids of points or lines by means of a rounding
or gravity function that gives to the user the impression that the
cursor is pulled towards these objects.

In desktop applications such as CAD/CAM (Computer Aided De-
sign/Manufacturing) and games, it is common to the user want to
pick 3D models (surfaces) rendered on screen and snap the cursor
to the visible portions of them. In such snapping mode, the depth
coordinate of the unprojected cursor is set to the depth of the sam-
pled 3D surface pointed by the cursor’s hotspot. This can be seen
as a special picking mechanism that determines the current 3D po-
sitions of the cursor on the surface and the corresponding surface’s
normal vector.

Picking is a fundamental interaction task that consists of selecting a
geometric element pointed by a 2D or 3D cursor [1.
For a 2D cursor, a traditional implementation of picking consists of

*e-mail: {harlen,ting} @dca.fee.unicamp.br

Figure 1: Snapping to a sphere deformed on the GPU. Left: on a
portion with smooth variation in the normal; Right: on a portion
with large variation in the normal due to bump mapping.

calculating a picking ray defined from the current cursor’s screen
coordinates unprojected back to the 3D object space according to
the inverse transformation of the world, view and projection ma-
trices. The nearest object to the viewer that intersects the picking
ray is selected. To extend this to surface snapping, the 3D cursor
along the picking ray is simply moved to the object’s surface at the
intersection point and aligned to the surface’s normal. Performing
this continuously over the frames will produce the perception that
the cursor is snapped to the surface.

Nowadays, with the advent of programmable graphics hardware,
the geometry submitted to the rendering pipeline can be arbitrarily
modified by geometric transformations in a vertex processor run-
ning a user-defined vertex shader and further changed with respect
to depth and normal in a per-fragment level by a fragment shader.
The vertex shader can instruct the vertex processor to change the at-
tributes of the stream of vertices that compose the original geome-
try, namely the position and the normal of the surface, thus produc-
ing a geometry that differs in shape with respect to the submitted
model. The fragment shader, in its turn, can modify the attributes
of each fragment, such as the depth and the normal vector, after the
rasterization stage [; 1.

This approach starts to be widely used in techniques such as terrain
rendering, geometry blending and skinning, since it minimizes the
processing bandwidth required to render the models. Unfortunately,
the standard snapping algorithm based on the original geometry
does not work satisfactorily with geometry deformed on graphics
hardware, as the primitives snapped in object space may not cor-
respond to the expected fragments rendered at the 2D screen pixel
containing the hotspot of the input device cursor.

In this work, we propose a snapping algorithm in image space that
can handle geometry arbitrarily modified in the rendering pipeline
both by changes of the vertex position and direction of vertex nor-
mals in object space, and changes of depth and normal in a per-
fragment level. Figure 1 shows two snapshots of the snapping result
on a sphere whose points and normal vectors have been changed in
the vertex shader with use of sine functions and whose rasterized
data have been disturbed by the fragment shader to produce a bump
mapping effect. Observe in the small squares (zoom in on the cursor

with a triad shape) that the hotspot (white ball) and the z-axis (green
axis) of the cursor accompanies the geometry of the deformed sur-
face. The point to which the cursor snaps is consistent to what the
user is actually seeing. This is because our technique uses data read
from the frame buffer, as explained further in Section 3.

For having correct visual feedback of the actions on the snapped
point, it is sometimes necessary to know its corresponding point in
the original geometry. We show in Section 3.1 how to determine,
on scenes consisting of triangular faces, a correspondence between
the snapped primitives in image space and the original primitives
in object space. Besides the snapped point position and the sur-
face’s normal vector at this point in the object space, the proposed
snapping algorithm is capable of returning which triangle the cursor
snaps to along with the barycentric coordinates of the point relative
to that triangle.

As our snapping algorithm read data from the frame buffer after
flushing the rendering pipeline, CPU stalls happen, which may
therefore slow down the overall rendering performance. In Sec-
tion 3.2 we present an efficiency improvement by using a granular-
ity time control so that the frame buffer does not need to be read for
every frame. This decreases the number of stalls along the frames
and maintains the sensation of a smooth interaction.

Performance test results of an implementation of the optimized and
non-optimized algorithm are given in Section 4. In addition, they
are compared against the results from the picking and snapping ap-
proach in software, as implemented in the D3DX library of the Mi-
crosoft Direct3D API [].

Finally, in Section 5 we discuss the reasons that make us think that
the standard object space picking and snapping approach is not fea-
sible for efficiently dealing with tasks related to deformation of ge-
ometry in graphics hardware, from the common per-fragment per-
turbation of the normals for bump mapping to cutting-edge features
such as real-time displacement mapping.

2 Related Work

The snapping technique was traditionally used in CAD/CAM appli-
cations as a tool for positioning the input device cursor relatively to
the position of markers, axis-aligned grids and geometry already
created, thus helping the user to build accurate geometric mod-
els [;]. Nowadays, in applications
such as virtual reality and games, cursor snapping may be used to
give the user a better sense of the object’s shape and dimension due
to the additional depth and curvature cues it provides.

Unfortunately, snapping algorithms based on intersection tests per-
formed in object space do not work satisfactorily on geometry
changed in the programmable rendering pipeline since the applica-
tion cannot trivially know how the geometry will be modified [

]. As a result, the snap point in object space usu-
ally does not correspond to the same point after the ob]ect space
transformation by the vertex shader. Furthermore, on image-based
rendering techniques such as the relief texture mapping |

], complex models may be rendered almost solely from
a set of textures that are processed by a fragment shader and ap-
plied on a very simple object (e.g., a cube) that does not keep any
resemblance to the final apparent shape of the rendered object.

How can the user snap the cursor to the surfaces rendered on screen
and determine the expected 3D position of the cursor in object
space? The picking techniques available in the industry standard
APIs are generally not suitable for snapping to geometry modified
in the graphics hardware.

The Direct3D’s D3DX library uses a picking procedure based on
intersections tests between the picking ray and the geometry in
object space stored in system memory []. To consider
the deformation, the application must transform the geometry us-
ing a software version of the deformation code of the shader and
then perform the intersection test with the resulting geometry [

]. Although this technique is quite accurate, it needs to trans-
form the geometry twice when the cursor is snapping on a surface:
one for the hardware version and other for the software version of
the shader. This drawback can apparently be overcame by switch-
ing off the hardware version of the shader when the cursor is in a
snapping mode, then using the software version for both snapping
and rendering. However, this solution is a hindrance to the efficient
usage of geometry deformation in hardware. If the snapping mode
is always on, the geometry deformation in hardware will never be
used. This strategy also does not work with geometry in which the
depth or the normal of the fragments is changed in the fragment
processor.

OpenGL provides a picking technique by using a special rendering
mode called selection mode [1. When render-
ing in such mode, the hardware is capable of returning identifica-
tion data about the rendered models. Names are assigned to sets of
primitives and, after rendering the primitives in the selection mode,
the hardware returns a list of names corresponding to the geometry
totally or partially contained in the view frustum, together with the
minimum and maximum depth value of each set. On the basis of
the selection mode, Wu et al. |] proposed a novel
snapping algorithm on the basis of two differential geometry prop-
erties: the position of the snapped point provided by the OpenGL
API, and the normal vector of the picked surface at this point de-
livered by the application. Although the algorithm does not require
the knowledge of the global representation of the surface, it still
demands the application’s intervention for completing a snapping
action. It is because that the selection mode takes into account de-
formation of the geometry in hardware, but is not able to provide
per-primitive data such as normal vectors and texture coordinates at
the picking point.

3 Snapping Algorithm

Our snapping algorithm works in image space for determining the
surface’s depth and normal after the modification by the shaders in
hardware, thus guaranteeing that the snapping will be performed
exactly in what the user is seeing, with pixel level precision. It
consists of rendering the scene onto an off-screen buffer in an addi-
tional rendering pass, or concurrently when working with a multiple
rendering target, using a shader that encodes the geometry’s nor-
mal and depth data in this off-screen buffer. The value of the pixel
pointed by the 2D mouse cursor is read back to the application and
used for computing the corresponding 3D snap point (position and
normal) in object space.

We assume the user has previously selected a particular model of
the scene for snapping. If this is not the case the model can be
picked by rendering each object with a unique identifier encoded
as a color value, then reading back the frame buffer at the pixel
pointed by the 2D cursor and decoding the false color to obtain the
identifier of the picked model []. As expected,
the shaders used to do this must use the same deformation code
used when rendering the actual models. Snapping on the selected
object is then performed in the following steps:

1. Render the scene as normal. The scene is rendered in the
frame buffer as usual.

(b)

(d)

Figure 2: False color visualization of the frame buffer data used for extended snapping. (a) Normal map; (b) Depth map; (c) Labeling of

faces; (d) Barycentric coordinates.

2. Isolate relevant pixel. Since we need the surface data only
at the pixel pointed by the 2D mouse cursor, the projection
and viewport matrices are set up so that the view-frustum en-
compasses solely this pixel. This greatly decreases fragment
processing.

3. Render normal and depth map. The normal vector and depth
at the snap pixel are the fundamental frame buffer data needed
by a snapping algorithm, as they are sufficient for computing
the 3D position of the cursor and a tangent plane at the snap
point []. In order to obtain the normals and
depth values of the rendered primitives in a per-pixel basis,
we render the scene onto an off-screen buffer using a normal
and depth map shader. Although the depth value is already
available in the frame buffer, the depth map may be needed
because the availability of a reading operation from the depth
buffer data depend on the hardware architecture and API (e.g.,
Direct3D does not guarantee a readable depth buffer).

The vertex shader must perform the same geometric transfor-
mations of the vertex shader used when rendering the geome-
try in the first pass. Likewise, the fragment shader must apply
the same changes in depth and normal as the original fragment
shader.

4. Read off-screen buffer data. After flushing the rendering pipe-
line, the off-screen buffer pixel pointed by the 2D cursor is
read back and decoded for restoring the normal vector in ob-
ject space and the depth value in perspective space. The corre-
sponding normal vector in world space is computed by simply
transforming the object space normal by the world transfor-
mation matrix. Instead, the user can directly encode the world
space normals in the vertex shader.

The 3D cursor’s world position is computed by unprojecting
the 2D cursor’s location back to the world space according
to the inverse transformation of the viewport matrix, then ex-
tending the resulting vector together with the depth value and
transforming it by the inverse of the world, view and projec-
tion matrices.

3.1 Mapping Snapped Pixels to Primitives

In applications such as 3D painting and geometry trimming, the
user may need to know which primitive the cursor lies on among the
primitives that compose the model, or the affine coordinates in the
plane of the snapped primitive such as the barycentric coordinates
of the snapped point with respect to the triangle that contains it.
In order to do so we present an extended snapping algorithm that

include additional data in the frame buffer besides the data provided
by the normal and depth map. This is explained in the following.

3.1.1 Identification of Primitives

For deciding which primitive on a triangular mesh contains the snap
point, we assign for each triangle a unique identifier that is encoded
as a color value in the frame buffer. In particular, the first vertex of
each triangle includes the primitive’s identifier as a vertex data that
uses a color component semantic. The geometry is then rendered
using a flat shading model that uses this false color of the triangle
at the first vertex as the false color of the entire triangle. Finally,
the 2D pixel containing the snap point is read back from the frame
buffer and the color value is decoded for obtaining the identifier of
the snapped triangle. Multisampling antialiasing is disabled when
using this technique, otherwise invalid identifiers may be generated
at the primitives’ boundaries.

Normally the encoding of the identifiers should be done in an addi-
tional rendering pass besides the normal/depth map rendering due
to the state change of the shading model. In order to integrate this
with the normal/depth map rendering using the Gouraud interpola-
tion model, the 3D mesh may be submitted to the rendering pipeline
as a non-indexed triangle list. The non-indexed mode is required,
otherwise the vertices adjacent to two or more triangles could not
describe more than one primitive identifier.

3.1.2 Barycentric Coordinates

Besides the identification of the primitive where the snap point lies
on, it is often useful to calculate the barycentric coordinates of the
snap point with respect to the surface’s triangle that it belongs. With
such data it is possible to compute primitive’s affine attributes that
are not explicitly changed by the hardware shaders, such as tex-
ture coordinates for 3D painting. In fact, if the normal data is
not changed in the vertex or fragment shader, an encoding of the
barycentric coordinates can substitute the normal map rendering.

Our strategy consists of rendering a map of barycentric coordi-
nates in a similar way as we render the normal map. Let us con-
sider the barycentric coordinate pair (f,g) given by the equation
Vi+f(Va—V1)+g(V3—Vyp), where Vi, V,, V3 are the triangle’s ver-
tices (triangle of reference). We encode f and g as two color com-
ponents of each vertex and let them be linearly interpolated across
the triangle. In special, we assign 1 to the first color component of
V5 (which represents f) and 1 to the second color component of V3
(which represents g). The remaining color components are set to

null, including all color components of V;. Finally, we read back
the false color values from the frame buffer and decode them to ob-
tain the (f,g) pair, where f is the value that controls the weight of
Va; g the weight of V3, and 1 — f — g the weight of V.

Similarly as in the identification of primitives, the rendering of the
map of barycentric coordinates can be integrated with the normal
and depth map rendering, assuming a frame buffer with higher pre-
cision that is capable of storing the required additional data.

In Figure 2 we show a visualization in false colors of the contents of
the frame buffer for the extended snapping algorithm. In Figure 2(a)
we show the normal map rendering with the X,Y, and Z components
of the normal vectors in world space encoded in the [0, 1] range of
the R, G, B color components, respectively. Figure 2(b) is the depth
map and Figure 2(c) corresponds the identification of primitives by
assigning a unique color for each face. Figure 2(d) presents the
barycentric coordinates, with the vertices’ weights of the second
and third vertices of each triangle encoded as red and green inten-
sities.

3.2 Optimization

Our basic snapping algorithm was intended to read the frame buffer
for every frame, which could result in poor rendering performance
due to the CPU stalls. Fortunately, the nominal frame rate required
to maintain the sensation of interactivity of the snapping operation
is a fraction of the actual real-time rendering frame rates. Therefore,
we can increase the overall performance by simply decreasing the
frequency of frame buffer accesses that are performed in sequence
by the snapping algorithm as the 3D models are rendered.

The frequency may be controlled by the user according to the com-
bination of the required degree of cursor positioning precision, the
average magnitude of the displacement vector of the cursor and the
frame-to-frame coherence of the snapped object. In our experi-
ments we obtained reasonable results starting from a minimum of
20 Hz.

In order to maintain the smoothness of motion of the snapped cur-
sor between frames of frame buffer accesses, we used a technique
similar to that proposed by Wu et al. []. During the
interval in which the frame buffer is not accessed, the 3D cursor
snaps to the last computed tangent plane that corresponds to the
last frame buffer access of a snap point. Though the last snap point
computed by the image space snapping is always within the bounds
of a triangle, the 3D cursor position may snap outside the triangle if
the cursor displacement vector has a magnitude that is greater than
the dimensions of the initial snapped primitive. However, the cur-
sor lies always on the plane that contains the triangle, which helps
to maintain the sense of interaction even on scenes rendered with
very low frame rates.

4 Implementation and Tests

The algorithm was implemented in C++ using Direct3D and tested
on a AMD Athlon 64 CPU with a NVIDIA GeForce FX 5900 XT
GPU. The basic algorithm was first implemented using a frame
buffer format of 8 bits per color component. However, due to the
need of higher precision for the depth data on most scenes, we also
implemented the algorithm using a floating point frame buffer of 32
bits per color component. We used this last format for all the tests.
The improvements suggested in Section 3.1 were also integrated in
this implementation. Thanks to this format, there was no need of

Figure 3: The test models: the deformed teapot and sphere.

scene no snap SW hw hwat60 Hz
Low tess. teapot 2,86 3,60 3,22 2,90
Sphere 2,63 6,74 3,19 2,71
High tess. teapot 5,99 23,10 7,55 6,33

Table 1: Average rendering time (in ms) for the three test models
using the basic snapping algorithm.

using multiple additional rendering passes. In special, the orienta-
tion data was packed in the red color component using 8 bits for
each vector component; the identifier of the primitives was packed
in the green color component; the Barycentric coordinates in the
blue component; the depth data in the alpha component.

In order to determine the efficiency of the algorithm we compared
it against the software picking technique used by the D3DX library
of the Direct3D API. When using the D3DX library, geometry de-
formation was performed in software only. We did not use per-
fragment deformation since the D3DX algorithm could not handle
such case. The models used for testing were a teapot and a sphere
deformed by sine functions over time and rendered as non-indexed
triangle lists (Figure 3). The sphere was defined by 4,512 triangles
and 2,307 vertices. The teapot was tested with a low tesselated ver-
sion (2,256 triangles, 1,178 vertices) and a high tesselated version
(16,256 triangles, 8,710 vertices). Although non-indexed triangle
lists were mandatory for the extended snapping algorithm, indexed
geometry rendered as triangle fans and strips can be used for the
simple snapping algorithm, thus increasing performance.

In the first test we measured the performance of the basic snapping
algorithm capable of returning a 3D position and its surface’s nor-
mal only. This is usually sufficient for real-time applications such
as games, as the user simply wants to select the models. The test
results, measured as the total rendering time in milliseconds, are
shown in Table 1. The column named “no snap” shows the render-
ing time without using any snapping algorithm but still using the
deformation shader. The column “sw” contains the measurements
obtained with the D3DX algorithm. The “hw” column show the
rendering time obtained when using our algorithm without the op-
timization proposed in Section 3.2. The column named “hw at 60
Hz” shows the results when using such optimization with a snap-
ping frequency of 60 Hz.

Our algorithm performed better than the D3DX algorithm for all
models, even when not using the granularity control. The main bot-
tleneck of the D3DX algorithm was the need to recalculate, for ev-
ery frame, the model’s vertex buffer in software based on the origi-
nal geometry. On the other hand, CPU stalls were not an issue when
using our algorithm. We think this is because the fragment process-
ing was limited to only one pixel, being the remainder discarded in
the clipping stage.

The second test used the extended snapping algorithm that returns
the identification of the snapped faces along with the barycentric

scene no snap SW hw hwat 60 Hz
Low tess. teapot 2,86 3,60 3,28 2,93
Sphere 2,63 6,74 3,33 2,72
High tess. teapot 5,99 23,10 8,02 6,46

Table 2: Average rendering time (in ms) for the three test models
using the extended snapping algorithm.

coordinates of the snap point. The results are shown in Table 2 us-
ing the same conventions of the previous table. The results for the
“sw” and “no snap” modes are showed again for comparison. Per-
formance dropped slightly in this case due to the additional com-
putations performed in the GPU. Nonetheless, the results obtained
with the hardware snapping are still better than the software ver-
sion.

5 Conclusion

We presented a technique for snapping to geometry deformed on
graphics hardware. The geometry can be affected by both changes
in vertex position and orientation in the vertex shader, and per-
fragment changes of normal and depth in the fragment shader. The
technique works in image space and is thus capable of snapping the
cursor to the geometry actually rendered instead of the geometry
originally submitted to the rendering pipeline '

Firstly, we proposed a basic snapping algorithm that uses a normal
and depth map rendering to calculate the 3D position and the cor-
responding surface’s normal vector of the snapped cursor after the
deformation of the model on the GPU. We also present an extended
version of the algorithm that is capable of identifying which face
the cursor snaps to, and the corresponding barycentric coordinates
of the point of snapping. We further improve the efficiency of the
algorithm by decreasing the frequency of frame buffer accesses and
snapping the cursor to the tangent plane computed from the last
access to keep the sensation of a smooth cursor motion.

According to the performance tests, the algorithm is more efficient
than the standard snapping technique based on intersection tests.
This is true even when the proposed optimization of decreasing the
frequency of frame buffer accesses is not used. Our algorithm de-
pends mainly on the processing power of the GPU and it is not neg-
atively influenced by vertex data transfers between the CPU and
the GPU as in the standard technique in software. Therefore, it
can be used for real-time selection of deformed models in games
(e.g., skinned meshes, terrains, displacement mapped models), for
interactive 3D painting and surface trimming. Figure 4 illustrates a
potential application of our algorithm in 3D painting. In this case, it
is a freehand drawing with the use of a mouse on a teapot deformed
by the vertex shader.

We believe that, as the graphics hardware continue to evolve, the
flexibility of the GPUs will allow users to increasingly take advan-
tage of the deformation of geometry in hardware in such a way that
it will soon become too difficult to efficiently emulate such transfor-
mation in software. In fact, performing tasks such as displacement
mapping, deformation of higher-order primitives and per-fragment
perturbation of normal vectors and depth in software would require
the emulation of a significant part of the rendering pipeline on the
CPU. The standard snapping algorithms in software are unfeasible
in these cases, while a technique based on image space, as the one
presented here, can handle them straightforwardly.

Videos and sample code of the snapping technique are available at
http://www.dca.fee.unicamp.br/projects/mtk/batagelo/index.html.

Figure 4: 3D painting on a deformed teapot using the extended
snapping algorithm.

Acknowledgment

This project was supported by the National Research Council
(CNPq) under the grant number 141685/2002-6 and The State of
Sdo Paulo Research Support Foundation (FAPESP) under the grant
numbers 1996/0962-0 and 03/13090-6.

References

BIER, E. A., AND STONE, M. C. 1986. Snap-dragging. ACM
SIGGRAPH Computer Graphics 20, 4, 233-240.

BIER, E. A. 1990. Snap-dragging in three dimensions. In Proceed-
ings of the 1990 Symposium on Interactive 3D Graphics, ACM
SIGGRAPH, Snowbird, Utah, 193-204.

DIRECTX NEWSGROUP THREAD. 2002. SkinnedMesh
Pick Problem, February. Internet newsgroup: mi-
crosoft.public.win32.programmer.directx.graphics.

DIRECTX NEWSGROUP THREAD. 2004. Determining Which
Skinning Method to Use, May. Internet newsgroup: mi-
crosoft.public.win32.programmer.directx.graphics.

FOLEY, J. D., VAN DAM, A., FEINER, S. K., AND HUGHES, J. F.
1990. Computer Graphics: Principles and Practice, 2™ ed.
Addison-Wesley Publishing Co., Reading, MA.

MICROSOFT CORPORATION. 2004. DirectX 9.0 Programmer’s
Reference, October.

OLIVEIRA, M. M., BISHOP, G., AND MCALLISTER, D. 2000.
Relief texture mapping. In Proceedings of SIGGRAPH 2000,
ACM Press / ACM SIGGRAPH, New Orleans, LA, ACM.

SHREINER, D., W00, M., NEIDER, J., AND Davis, T. 2003.
OpenGL Programming Guide: The Official Guide to Learning
OpenGL, 4 ed. Addison-Wesley Pub Co. ISBN 0321173481.

Wu, S.-T., ABRANTES, M., TOST, D., AND BATAGELO, H. C.
2003. Picking and snapping for 3d input devices. In Proceedings
of SIBGRAPI 2003, 140-147.

	Introduction
	Related Work
	Snapping Algorithm
	Mapping Snapped Pixels to Primitives
	Identification of Primitives
	Barycentric Coordinates

	Optimization

	Implementation and Tests
	Conclusion

