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Abstract. To reconstruct a topologically consistent 3D surface model is a challenging problem. In this paper we
present an algorithm that estimates from a range image, without registering and converting it into a volumetric data,
the most probable topology of a surface to be reconstructed. In our algorithm we start with a closed initial mesh
and preserve its “closeness” during the reconstruction process. Some experiments were carried out to validate our
proposal.

1 Introduction

The problem of reconstructing a surface from a set of sam-
ple points is required in many applications such as robotics,
computer graphics, geometric modeling, and computer vi-
sion. In this paper we consider a specific reconstruction
problem in which the input is a range imageR acquired
from a surfaceS, and the desired output is a triangular mesh
with vertex set belonging to the sampled dataR. Further-
more, the resulted triangular mesh has the most probable
topology of the surfaceS.

Based on the dynamic balloon model [2], theradial
flow model(RFM) [13] is a method for reconstructing from
a range imageR, e.g. Figure 1.a, a surface with genus zero,
(Figure 1.c). It starts with a simple triangular mesh (Fig-
ure 1.b) covered by the sampled dataR. A radial inflation
force on its vertices make them move towards the samples
in R. While the mesh inflates, its triangles may be sub-
divided adaptively, in such a way that a mesh with evenly
distributed vertices is ensured. Because that from a grow-
ing center solely a star-shaped region ofR is reached, more
than one center may be set for correct fitting.

(a) (b) (c)

Figure 1:Radial Flow Model

Da Silva [4] also outlined a way to use RFM for re-
constructing surfaces with arbitrary topology. It consists on

1. estimating the topology ofS,

2. establishing when the genus of the deforming mesh
should be changed, and

3. performing topological surgeries on the deforming
mesh.

As far as we know, there are some works addressing
dynamic topological updates on the physically-based de-
forming mesh. They extract surfaces of arbitrary topology
from volumetric data [8, 12]. The dynamic evolution for
the mesh is governed either by the Euler-Lagrange equation
or by global minimization rules. In addition, Curless and
Levoy proposed a method for converting range data into
a volumetric model to apply this reconstruction technique
to range images [3]. The drawback of this reconstruction
approach is that it depends strongly on the internal and ex-
ternal forces to be defineda priori from the input data and
features.

Unlike previous works, RFM is a reconstructing
method which does not require to convert a range image
into a volumetric representation. Only on the basis of
the planar geometry of the range image and range sample
points, one can control dynamically the topology of the re-
constructed mesh as it inflates towards the sample points.
Moreover, following the method proposed by Chen and
Medioni [2], we do not need explicitly any internal and ex-
ternal forces for deforming our mesh.

In this work we present an implementation of the ideas
presented by Da Silva [4]. We suggest estimating the
topology of the surfaceS by detecting inner “holes” in its
scanned range imageR (regions of pixels with depth equal
to zero). To determine the instant that the topology of the
reconstructed mesh should be changed for better tailoring



the sample points, we propose watching the approaching of
two growing fronts that are path-connected by the border
of a inner hole. And, finally, a topological surgery consists
simply in “cutting” one face from each growing front and
“gluing” their borders through a strip of triangular faces.

The remainder of this paper is organized as follows.
To be self-contained, we present in Section 2 some con-
cepts and terminology useful for this work. Section 3 de-
scribes briefly the steps that are required to fit a set of sam-
ple points using RFM, and summarizes the theoretical re-
sults concerning topological updates on the reconstructed
mesh that Da Silva obtained. Section 4 gives our proposal
and Section 5 shows some examples. Finally, in Section 6
some concluding remarks are drawn.

2 Background

Given a surfaceS and a directionz, theheight functionin
this direction,f : S ! R, is the projection ofS onto the
directed line in the direction ofz [7].

A critical point of a real functionf is a point at which
the gradient off vanishes. Critical points are classified by
their indices. The index of a critical pointp is the number
of negative eigenvalues of the Hessian matrix off atp

H(p) = J(rf(p)) =

�
fxx(p) fxy(p)
fyx(p) fyy(p)

�
:

Hence, the index of a critical point can be0, 1 or
2, which corresponds, respectively, to a minimum, a sad-
dle point and a maximum. The topology of the level set
changes at these critical points. (Figure 2). At a saddle-
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Figure 2:Critical points of a torus.

point either a connected curve may be split into two curves
(branching saddle-point) or two curves merged in a curve
(merging saddle-point).

TheEuler characteristic� of a surfaceS is topolog-
ically invariant. The Euler characteristic of a closed and
orientable surface of genusg is 2 � 2g. It can also be ex-
pressed in terms of the number of critical points ofS

2� 2g = Nmax +Nmin �Nsad (1)

whereNmax,Nmin, andNsad are, respectively, the number
of maximums, the number of minimums, and the number of
saddles of the surface [10, 9].

Let S1 andS2 be two disjoint closed surfaces. Their
connected sum[9], denoted byS1#S2, is obtained bycut-
ting a small circular hole in each surface, and thengluing
the two surfaces together along the boundaries of the holes.
More precisely, we choose subsetsD1 � S1 andD2 � S2,
such thatD1 andD2 are closed discs, and define a homeo-
morphismh of the boundary circle ofD1 onto the boundary
of D2. ThenS1#S2 is obtained by identifying the points
x andh(x) for all pointsx in the boundary ofD1 (Fig. 3).

Genus 1

Genus 0

S1 S2

Cutting Gluing

Figure 3:Topological surgery

The connected sum of two disjoint surfaces is also known
astopological surgery.

3 The Radial Flow Model

In this section the RFM reconstruction procedure and some
theoretical foundations developed by Da Silva [4] for ap-
plying topological surgeries on the reconstructed model are
given. Points in the illustrations correspond to the given
range data.

3.1 The Procedure

From the range dataR a convenient initial reference sys-
tem is determined and a vertexv0 of an initial closed mesh
M0 (decahedron) is placed on the originO of this refer-
ence system. From this origin a star-shaped image region is
determined. A regionR � R is called star-shaped, when
a ray fromO to everyp 2 R only intersects withR in
p. As v0 is fixed during the radial growing process, it is
called aninactive point. The rest of the vertices builds a
growing front. O is indeed the radial center of this growing
front. Figure 4.a shows the initialization for the range im-
age given in Figure 4.b.M0 is covered by the range data
and its inactive vertex is the common vertex of its bottom
faces.

Next, a radial force is exerted, making the mesh in-
flate as each of its vertices moves radially towards acorre-
sponding(sample)point in R. Corresponding points of the
vertices of a facef 2 M0 induce acorresponding region
r � R to f .



(a) (b)

Figure 4: (a) InitialM0 andR concerning the (b) range image
R

To adjust a meshMi to a particular detail of the sam-
ple points, an edgevivj in the mesh is subdivided if the
following conditions are fulfilled:

� its length is greater than a specified tolerance,

� one of their adjacent faces has reconstruction error.
The reconstruction error of a facef 2 Mi is deter-
mined from the radial distance off to the points in its
corresponding region (Figure 5),
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Figure 5:(a)Mi in relation toR and (b) its reconstruction error
in a 2D view.

� their adjacent faces satisfy thequality value

kemaxk < 1:25kek;

wherekemaxk is the length of the greater edge of the
face, to avoid the “degenerated” faces, and

� there is a corresponding point in a solid angle defined
by the two adjacent faces ofvivj (Figure 6).
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Figure 6:(a) Points ofR inside of (b) a solid angle

It is worth remarking that, in order to improve the qual-
ity of the reconstructed mesh, we keep a Delaunay triangu-
lation whenever a new vertex is inserted in the mesh. The
incremental insertion algorithm of Lawson [1] is applied.

The sequence of operations refining–inflating is re-
peated until no more subdivision and no more inflation is
possible, as in the case ofparallel faces. The parallel faces
are the ones whose normal vector is almost orthogonal to
the inflating direction (Figure 7).
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Figure 7:Parallel faces (a) inMi and (b) a 2D view of them.

When no more inflation is possible, reconstruction er-
rors are evaluated. The triangular faces that still have re-
construction errors are grouped into disjoint sets of faces
for building new fronts (of growth). From each of them
a new radial reference system and new star-shaped corre-
sponding region are determined before carrying out again
the cyclic sequence refining–inflating to yield a new mesh
Mi+1 (Figure 8).
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Figure 8:Reference system of a new front in a 2D view.

Whenever a face without reconstruction error is de-
tected, we mark it as ananchored face. If there is no face
in the meshMi with reconstruction error, it is considered
that the aimed reconstructed 3D model is reached. Figure 9

Figure 9:A reconstructed model.

presents a reconstructed triangular mesh from the range im-
age rendered in Figure 4.b.



3.2 Topological Updates

The proof of the propositions and the corollaries given in
this section may be found in the doctorate thesis of Da
Silva [4].

Proposition 3.1 LetM andR be, respectively, a regular
surface and its range image in the direction�. Letfh and
gh be the height functions ofM andR, respectively, in the
direction perpendicular to�. pR, with continuous height
values in the domain whereM is defined, is a critical point
of gh, if and only if, its correspondencepM is a critical
point offh.

The “continuity” in the height values is required for
getting rid of the false critical points as illustrated in Fig-
ure 10.

Discontinuous height values

Figure 10:False critical points

Since from one range image it is not possible to in-
fer what is behind the view, we may consider, without
loss of generality, that the scanned original surface is C0-
continuous and the unseen part should be somehow “filled”.
Then, for estimating the genus inM we may reduce the
range imageR into a binary imageI by attributing 0 to the
pixel where the depth value is zero, and 1, otherwise.

The following corollary ensures us that the number of
critical points inM cannot be less than the number of crit-
ical points inI.

Corollary 3.1 Let fh andgh be the height functions ofM
andI, respectively. IfpI is a critical point ofgh, then its
correspondencepM is a critical point offh.

We may have more than one critical point along the
direction� (hidden critical points). The following corollary
gives us the lowerbound of the genus inM.

Corollary 3.2 The genus inI is less or equal than the
genus inM.

Consequently, topological surgeries on the recon-
structed meshMi are necessary whenever the number of
holes inI is greater than the genus ofMi.

Now, the following corollary tells us the instant that a
topological surgery should be performed.

Corollary 3.3 Let A1;A2 � Mk be two distinguishing
maximally connected unanchored face sets andI1 and
I2 � I be, respectively, the corresponding regions. If at
iterationj the corresponding regions ofA1 andA2 become
adjacent, then there is a height function ofI for which there
is a merging saddle-point in the neighborhood ofI1 andI2.

And, finally, there are two propositions that show us
how to change the genus and to maintain the orientation of
the reconstructed mesh, respectively.

Proposition 3.2 The merge of two sets of maximally con-
nected unanchored faces belonging to a closed surface in-
crements the genus by 1.

Proposition 3.3 The orientation ofM is preserved by
topological surgery (Figure 11).
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Figure 11:Merging.

4 Our Proposal

As already explained in Section 3.2, we consider thatM is
C0-continuous and, instead ofR, we may use the binary im-
ageI for inferring the topological properties of the model
M to be reconstructed.

To implement the theoretical foundations presented in
Section 3.2 we should devise procedures for

� segmentingI by detecting its inner and outer borders,

� segmenting the given range imageR by partitioning it
into a set of star-shaped subregions,

� detecting when a topological surgery is necessary, and

� performing a topological surgery.

These procedures were developed separately and inte-
grated into the previous version of the RFM.

4.1 Border Detection

There is a variety of work focusing on the border detec-
tion [5]. Our task was restricted on testing some of them
for accomplishing our goal which is to get accurately the
connected components and their oriented borders in the cor-
responding binary imageI of the given range imageR.



For obtaining the oriented border from a range image,
we chose the Chain-Code algorithm [5]. This technique is
based on 8-connectivity. We start with a point and walk
on the black or white connected region boundary, looking
for the border points. In our preliminary tests we realized
that two kinds of noises occur frequently and the algorithm
failed. They are the salt and pepper noises (Figure 12).

Pepper noise

Salt noise

Figure 12:Salt and pepper noises.

Then, before applying the Chain-Code algorithm, we
segment the binary imageI into maximally connected re-
gions containing pixels with value 1 (white regions), deter-
mine their areas, and remove all of “isolated” regions con-
taining pixels with value 0 whose area is less than a pre-
defined threshold (pepper noises), by attributing value 1 to
their pixels. Following, we re-segment the binary image
I into maximally connected regions containing pixels with
value 0 (black regions), and remove analogously all of “iso-
lated” white regions (salt noises), by attributing value 0 to
their pixels.

This preprocessing, besides allowing us to apply the
Chain-Code technique, gives us an estimation of the genus
that the modelMmay have. According to the Corollary 3.2
the number of bounded black regions cannot be greater than
the genus inM. Moreover, it delivers us the allowable re-
gion (white one) for placing the initial mesh.

4.2 Determination of Star-Shaped Regions

From Proposition 3.1, if a closed surface has genus 0 then
the corresponding binary imageI of its range imageR is
simply connected. The previous implementation of RFM
only considered that the planar geometry ofI is a star-
shaped one, which is simply connected. Hence, it has
worked well for reconstructing most surfaces with genus 0.
For each object, only oneinactive vertexis necessary and,
on the demand, the radial center is translated in the space
for creating new growing fronts in order to reach every 3D
sample point. Each radial center was defined as follows. It
is computed a line that passes by the barycenter of a poten-
tial growing front and has the direction of the approximate
“normal vector” of its contour. The radial center is a point
on this line, such that the front contour lies within a solid

angle of 45Æ defined by this point (Figure 8) [13].
Corollary 3.2 tells us that ifI is multiply connected,

then the modelM to be reconstructed has genus greater
than zero. With oneinactive vertexone cannot reach com-
pletely the border ofI without overlapping or “filling” the
holes. Hence, we suggest partitioningI into several star-
shaped regions, each of them is covered unambiguously by
a radial center (Figure 13).

Origin
o

Origin

o

Figure 13:Unambiguous coverage of a radial center in multiply
connected images.

The parallel faces that are adjacent to the base of the
maximal coverage of a radial center are calledlimit border
faces(Figure 14).

(a) (b)

Figure 14:(a) One (b) Four limit border faces.

For each radial center onI a new inactive vertexis
inserted. Emulating the fluid flow, we place a newinactive
vertexon the midpoint of the base-edge of thelimit border
faceand set the radial center on the line that intersects this
midpoint and that is parallel to the height direction of the
given range image. In this way, we believe that the mesh
is pushed uniformly to most sample points belonging to a
growing front (Figure 15).

o

o Old radial center

New radial center

M

Figure 15:Radial centers in a 2D View



4.3 Conditions for a Topological Surgery

From Corollary 3.3 we know that when two distinguishing
growing fronts become very close, there must be a merging
saddle-point in the modelM. Our challenge was to devise
a way for deciding

1. which pair among a set of potential growing fronts,
such as shown in Figure 14.b, should be merged, and

2. when they should be merged.

The pair of distinguishing growing fronts that must be
glued always share the same inner border. Hence, from one
limit border faceof a growing front we may get its pair by
running along the inner border of the imageI.

Whenever the scalar product of the normalized normal
vectors of theirlimit border facesis smaller than(�1 + �)
and the two segments defined by the border vertices are
inside the range image, we consider that they are close
enough for surgery. These two conditions are regarded as
proximity criteria for a topological surgery.

4.4 Topological Surgery

Analogous to the procedure depicted in Figure 11, it com-
prises two stages (Figure 16):

F1
F2

e0e1

e2

e3
e4

e5

e6

e7

e8

v1

v2

Figure 16:Cutting and gluing.

1. Cutting : thelimit border facesF1 andF2 of the two
fronts are removed.

2. Gluing : to preserve the orientability of the meshM,
we first insert the edgee1 to connect the two base ver-
ticesv1 andv2 on the inner border. Then, we create a
facef1 by closing the sequencee0e1e2 with the edge
e3, and a facef2 by closing the sequencee5e3e4 with
the edgee6. Finally, we close the mesh with a face
f3. A triangulation is performed on these three faces
along their diagonal.

After each topological surgery we merge two growing
fronts into one. The radial center of this new growing front
is placed on the line that passes by the midpoint of the com-
mon edge of the two new (base) faces derived fromf3 and
that is parallel to the height direction ofR. This placement
favors the upwards growing.

5 Experimental Results

We have implemented our procedures in C on a SUN-
SPARC platform and integrated into the previous version
of RFM.

To show how our algorithm works, let us present the
reconstruction of a torus (Figure 17.b) from the synthetic

(a) (b)

Figure 17: (a) A rendered range image and (b) reconstructed
mesh.

range imageR of 128� 128 (9915 points) shown in Fig-
ure 17.a. The initial mesh is a decahedron (Figure 18.a) and
the radial center covers partiallyR. The mesh grows until
it reaches the limit of the maximal coverage (Figure 18.b).
Observe that twolimit border facesresulted, each in one
“extreme” of the mesh. These faces are indeed parallel
faces. A new radial center and a new coverage are, then,
determined and the mesh grows further under the new ra-
dial inflation force (Figure 18.c) until the growing possibil-
ities are exhausted (Figure 18.d). Again, a new radial cen-
ter and a new coverage are computed and the mesh is fur-
ther inflated (Figure 18.e). When the proximity criteria are
satisfied (Figure 18.f), a topological surgery is performed
(Figure 18.g), and a new radial center is evaluated. With
upwards inflating force, the rest of faces are pushed to the
sample data (Figure 18.h).

We also selected some results we obtained with syn-
thetic images and a real range image. Reconstructed
meshes have been rendered in GeomView [6].

We tested our algorithm on a synthetic range image
of a tritorus of size 255�123 (22312 points). Three views
are presented in Figure 19: input data, a front and a back
view of the corresponding reconstructed mesh. In this case,
we observed that our algorithm can match correctly pairs of
growing fronts and perform three topological surgeries.

We also reconstructed a mesh from a synthetic range
image 123�189 (16071 points) which contains depth dis-
continuity (Figure 20). Since in our procedure we take the
assumption that the original surface is C0-continuous, when
ambiguous interpretation arises, the upper and the lower
border on the discontinuity are automatically connected.
As a result, the genus in the reconstructed model is always
equal to the genus in the given range image.
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Figure 18:A reconstruction sequence.

Figure 19: Tritorus.

Finally, we present two reconstructed meshes from a
real range image of 200�240 (14127 points) taken from
database available in the internet [11]. Note that in this im-
age we have a hard border. Independent of the pre-defined
tolerance, the topology of the reconstructed model is the
same. The tolerance only affects the mesh refinement (Fig-
ure 21).

Figure 20: Bitorus.

6 Conclusions

We have presented an extension to RFM algorithm in order
to support the reconstruction of arbitrary topological classes
of objects from a range image.

Our algorithm can automatically infer the topologi-
cal class of a surface to be reconstructed from the given
range image. Moreover, necessary topological updates on
the mesh can be dynamically detected and performed while
it grows, until it adjusts to the sample data in a pre-defined
tolerance.

We observed that our extension also improves the re-
construction of a surface homeomorphic to a sphere, when
the binary imageI of their range imageR is not star-shaped



(a) � = 1.5 units for error (b)� = 4.5 units for error

Figure 21: Taperoll.

as illustrated in Figure 22.

Figure 22: An image with non-star-shaped border

As further work, we intend to provide a mechanism
that integrates incremental- and dynamically the range im-
ages from different views to reconstruct completely a 3D
closed surface model.
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