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Abstract In this paper we present yet another re-
construction technique which generates a 3D closed
triangular mesh from an unregistered range image
by deforming discretely an initial triangular mesh.
Combining the advantages of the previous work
on a deformable model and on a function-graph
model, our algorithm avoids not only holes in the
reconstructed surfaces, but also self-intersections as
well.
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1 Introduction

Despite a variety of published work, the 3D re-
construction from a set of range images is still a
challenging and important problem for vision
community. Since no single range image suf-
fices to describe completely the surface of an
object, additional methods were devised either
to register multiple range images before sur-
face model creation [10, 2] or to “zipper” mul-
tiple meshes reconstructed from unregistered
range images [7]. In this context we may clas-
sify the known reconstruction techniques into
three schemes: zippering approach, deforma-
tion approach, and volumetric approach.

In the “zippering” approach, meshes (usu-

ally triangular) are constructed from unregis-
tered range images, and then they are “zip-
pered” together to build a closed 3D surface
model. The simplest way to build a mesh from
an unregistered range image is to consider the
range image as a sample of a graph-function.
Hence, one may build a triangular mesh by
connecting the adjacent points uniformly [7] or
adaptatively [6]. Only the points on the depth
border require special handling [7]. In the de-
formation approach, a 3D closed surface is ob-
tained by deforming an initial shape estimated
on the basis of the previously registered range
data. And, in the volumetric approach [2], the
underlying representation schema is indeed the
spatial enumeration one, where the value of
the signed distance function to the unknown
surface is computed for each cell. Therefore,
to obtain a 3D surface representation, conver-
sion algorithms, such as a marching cube algo-
rithm [8], are necessary (Figure 1).

Due to the data inaccuracy, the numerical
imprecision during segmentation, and specially
the occlusion problem, it is still a hard problem
to integrate separately reconstructed meshes
into a surface without “unwanted holes”. Re-
cent results on the volumetric approach show
that filling holes in the spatial enumeration
representation may be performed in a much
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Figure 1: Different reconstruction approaches.

more natural way than in the surface (bound-
ary) representation [2]. The deformation ap-
proach, however, has the advantage that there
is no hole filling problem at all. This is the
reason for attempting yet another deformation-
based reconstruction algorithm. It is indeed an
attempt to overcome the limitations presented
in the discrete deformation approach and to
make it competitive with the volumetric one
(Figure 2).
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Depth Images Model
Figure 2: An alternative reconstruction

scheme.

The deformation process emulates indeed a
physical behavior. An initial simple elastic ob-
ject is subject to internal and external forces,
estimated from images [3]. Governed by the
continuous mechanical laws the object shape
is dynamically deformed, until it reaches the
equilibrium state. There are two research di-
rections. One direction is to reduce the prob-
lem to a functional minimization one, whose
objective-function is to fit the sampled (im-
age) points with a minimal elastic energy sur-
face [3, 4]. Therefore, the initial shape must
be “similar” to the reconstructed model. An-
other direction is to reshape dynamically the
initial model [10] in a discrete way. Instead
of minimization, correspondence between the
mesh vertices and the image data must be es-

tablished during the growth process. The sec-
ond technique has an advantage that it is not
necessary to analyze the input data prelimi-
narily to obtain the required deforming force,
whereas the first one avoids self-intersections.

Our proposal is based on the inflating bal-
loon model [10] with a number of modifications,
namely improvement on the numerical robust-
ness, on the usage of the available data, and on
the restrictions on the initial estimate.

The paper is organized as follows. In sec-
tion 2 we present the basic idea of our pro-
posed radial flow method. Next, in section 3,
some experimental results are given. Finally, in
section 4 some concluding remarks are drawn.

2 Our proposal

From the range data the initial reference sys-
tem is determined and an initial closed mesh
M? is placed on the origin of this reference sys-
tem. Under the influence of a radial force, the
mesh inflates as its vertices v; move towards
the corresponding point in the range image R.
When the length of an edge, v;v; in the mesh
is greater than a specified tolerance dpqz, it is
subdivided and the mesh must be refined to
maintain a triangular topology.

The sequence of operations refining—
inflating is repeated, until no more subdivision
and no more inflation is possible. Then, recon-
struction errors are evaluated. If there are no
faces in the mesh M with reconstruction er-
rors, we consider that the aimed reconstructed
3D model is achieved. Otherwise, the trian-
gular faces that still have reconstruction errors
are grouped into disjoint sets of faces. These
sets of faces are denoted fronts (of growth).
From each of them we determine a new radial
reference system before carrying out again the
cyclic sequence refine-inflating to yield a new
mesh M**! (Figure 3).

Note that the connections between vertices
v;v; induce a planar graph on R: the corre-
sponding points of v; and v; define the nodes
and the induced connections, the branches.
Hence, for each face F' in M’ there is a cor-
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Figure 3: Our Proposal.

responding region F in R (Figure 4).
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QOur reconstruction method seems rather
simple, but in its implementation we faced sev-
eral problems:

1. how should we refine the mesh such that
no self-intersections?

2. how should be the control of the growth
step such that the reconstructed 3D-model
does not cross the range data?

3. how should the reconstruction error be de-

termined?

4. how should we compute conveniently each
reference system?

5. how should the noise be handled?

The key operations in our algorithm are the
search for a correspondence to a newly inserted
vertex and the subdivision of a “triangle” with
new inserted vertices in such a way that: (1)
in each deforming front there is no ambiguous
radial correspondence between its vertices and
the corresponding points on an image and (2)
each face is likely homeomorphic to its corre-
sponding region.

Inspired by the triangulation on the range
image that yields a 3D mesh without self-
intersections [6, 2|, we maintain the planarity
of the induced graph in R at each iteration
by looking for the corresponding sample point
(to a newly inserted vertex on an edge) in the
corresponding adjacent faces of the edge (Fig-
ure 5). Furthermore, our algorithm ensures

Range Image
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I;ront’s origin
Figure 5: The search domain.

that the corresponding point lies in the “solid
angle” defined by the bounding edges of these
faces and the radial direction of this point in-
tersects one of the two adjacent faces (Fig-
ure 6). To avoid unnecessary refinement, sub-
divisions on the faces and edges almost parallel
to the radial growing direction are restricted.
The overgrowth of M? is controlled by com-
puting at each iteration the radial reconstruc-
tion error of the inflating face. The minimum
of the radial reconstruction errors in each grow-
ing front is used as the growth step. The radial
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reconstruction error is simply the radial dis-
tance of each sample point to the reconstructed
model (Figure 7).
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Figure 7: The radial and height reconstruction er-
rors.

We distinguish two classes of reconstruction
errors: radial and “height” reconstruction er-
ror. One refers to the reconstruction error in
each growing front and the other to the recon-
struction error relative to the “depth direction”
of the range image. It is because that the radial
growth strategy may yield degenerated grow-
ing directions when a set of vertices may move
in the direction parallel to its adjacent trian-
gles (Figure 7). It occurs frequently when the
range image data are not from star-shaped ob-
jects. In this case, if no new growth fronts were
created no inflation effect is produced and de-
tails may be missed.

The determination of each new radial grow-
ing direction is decisive on its successful
growth. According to Chen and Medioni [10],
if every sampled range points belonging to a
front is within 45° of the reference system’s z-
axis, we have a favorable deformation. There-
fore, we use for each front a reference system
that has (1) its z-axis coincides with the di-
rection from the point of interest in the recon-

structed model to its corresponding point and
(2) its origin on a point such that the vector
of each image point belonging to the front is
within 45° from z-axis (Figure 8). It is worth
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Figure 8: Reference system of a front.

mentioning that when we change the reference
system of a front, the radial distance of each
non-anchored vertex must be reevaluated to
ensure a uniformly radial growing. After sev-
eral experiments, we got satisfactory results
when we used as the initial radial distance the
minimal radial distance of the sampled image
points on the regions corresponding the the ad-
jacent faces of the vertex (Figure 9). In addi-
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Figure 9: Reevaluation of radial distances.

tion, the new value of d,,,; must be recalcu-
lated to ensure new subdivisions.

For handling noise the surface tension strat-
egy [10] is applied on the adjacent vertices that
are not separated by the depth border. At each
iteration the velocity of each vertex is weighted
by its adjacent vertices and the reconstruction
errors of its adjacent faces. We denominate
this weight a stiffness factor. Hence, the geom-
etry of the reconstructed model is not affected
by an isolated noise (Figure 10).

3 Empirical evaluation

We have implemented our algorithm in C on
a UNIX platform. It is runnable on SUN-
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Figure 10: Noises.

SPARC, IBM-AIX, and PC (Linux).

TDM [9], Topological Data Model, library is
used to manage our radial flow model. TDM
provides its user a variety of functionalities to
create, to manipulate, and to inquire the topol-
ogy of an object, without knowing the underly-
ing data structure. In our case, it not only en-
sures the topological consistency (new topolog-
ical rearrangements) in each subdivision, but
also helps in obtaining topological information,
such as the oriented contours of a set of trian-
gles and the neighboring data.

To demonstrate the performance of our algo-
rithm in handling efficiently all the information
contained in a range image, just one cartesian
image was used for each reconstructed model.

For illustration, we include in this section
the radial flow models reconstructed from 5
synthetic images and 4 real images. For each
of them we present two data formats: input
(range) data and the corresponding radial flow
model rendered by Geomview [5].

We first tested the algorithm on the syn-
thetic image of a cone (Figure 11). In this case,

Figure 11: Cone.

we observed the combined action of d;,,, and
stiffness factor. Surface tension acts against
the growing force, reducing the velocity of the
vertices towards the cone apex to zero. But,
through the error determination, new growing

fronts were detected and new value for d,,q;
was determined to favor new subdivisions until
the neighborhood of the cone apex was actually
achieved.

Then, we tested the performance of our algo-
rithm in handling discontinuities in the range
data (Figure 12). In this case, the concept of

gy
N

Figure 12: Esfcub.

solid angle was important for controlling the
movement of a vertex towards ambiguous cor-
respondences, which leads to the reconstruc-
tion of a “valley” in the object even though
the range image does not contain the informa-
tion about the occluding faces. Note that our
radial model could not only reconstruct ap-
proximately the borderline of the discontinu-
ities, but also “filled” the “missed” faces that
should exist between these borders. Another
challenging problem was the reconstruction of
a "mountain” from a range image with sev-
eral valleys (Figure 13). The concept of feasi-

Figure 13: A mountain with three peaks.

ble searching domain for a corresponding point
was decisive in the success of our algorithm.
For testing the adaptability of our algo-
rithm with regard to the geometry of the re-
constructed model, we use it to reconstruct a
sphere and a plain face with distinct recon-
struction error tolerances. Note that this toler-
ance only has influence on the triangular mesh



where the curvature is higher (Figure 14).
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Figure 14: Adaptability.

In order to test our algorithm for complex
objects, we reconstructed the real image data
of Chopin bust (Figure 15), Mozart bust (Fig-

Figure 15: Chopin’s bust.

ure 16) and the Bigwye (Figure 17) taken
from MSU/WSU range database [1]. In these
cases, we experimented the capability of our
algorithm for reconstructing a non-star shaped
object and for avoiding self-intersections in the
regions with closely spaced features.

Finally, we experimented our algorithm for
a part of the Chopin image data — only its head
(Figure 18). The objective of this experiment
was to compare the performance of our algo-
rithm for star and non-star shaped objects. In
this case, less growing iterations were used to
reconstruct much more details.

Figure 17: Bigwye.

Table 1 summarizes the number of vertices
and the number of faces that we got for each
reconstructed model with reconstruction error
equal to 1.0 unit. We also included the number
of growing fronts and the number of iterations
that were needed.

4 Conclusions

We presented a new reconstruction algorithm
for the complex objects. It is based on a lo-
cal deformation approach, using a radial flow
model. The feature for a reconstructed algo-
rithm is its capability to utilize the most avail-
able data in each range image and yields a 3D
mesh without self-intersections and “gaps” be-
tween two adjacent faces. Our algorithm can
automatically infer the initial point and adapt
the maximal allowed edge length and growing
velocity in each front.

From our experiments, we can state that our
reconstruction algorithm behave well for lo-
cal surface properties, even when we deal with
non-star shaped objects.



image size (points) vertices faces growing fronts growing iterations
Cone 128x128 (12303) 642 1280 15 669
Esfcub 128x 128 (12449) 782 1560 22 326
Mountain 128x128 (12449) 901 1798 39 307

Plane 128x128 (12449) 56 108 1 147
Hemisphere 128128 (12449) 162 320 1 70
Chopin’s Bust 356x232 (45191) 10113 20222 278 2292
Mozart’s Bust 263x399 (61426) 7686 15368 211 1588

Head 131x142 (13026) 1697 3390 123 532
Bigwye 185x225 (21345) 1226 2448 56 976

Table 1: Summary of the experimental results.

Figure 18: Chopin’s head.

As further work, we intend to provide a
mechanism that permits the reconstruction of
an object that is not topologically equivalent
to the initial mesh.
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