Pre-Alignment for Co-registration in Native Space
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Co-registration in native space: (a) non-lesional T1-weighted MR volume; (b) PET volume colored with rainbow palette: red and blue correspond,

respectively, hyper and hypo-metablism; (c) Overlay of (a) and (b) provides accurate localization of hypometabolism on the anterior and middle part of the
right temporal lobe; (d) Co-registration of T1- and T2-weighted MRI images make subtle signs of focal cortical dysplasia more visible.

Abstract—For nonlesional patients, the correct localization of
the epileptogenic foci in native space remains a great challenge.
Non-invasive functional PET images that provide information
about cerebral activities may reveal the origin of seizure activity,
but without precise anatomical detail. Co-registration of the
functional images with MR images on the basis of maximization
of mutual information (MMI) has shown to be very promising
in improving presurgical evaluation. Nevertheless, a mutual
information (MI) function is non-convex and the convergence
of an algorithm to its optimum is guaranteed only if the initial
estimate lies in its convex vicinity. We present in this paper a
generally applicable method that pre-aligns the DICOM images
such that their relative position becomes close to an optimum. The
key to our solution is a robust user-guided interactive procedure
to extract valid voxels, for both the centroid estimation and
the registration. Aiming at comparative analysis, we introduce a
numerical condition to quantify registration errors. The results
are acceptable when we consider the intrinsic problems of the
MMI-based registration algorithm we implemented.

Keywords-Pre-alignment;co-registration; multimodal visualiza-
tion.

I. INTRODUCTION

The outcome of surgical treatment for refractory epilepsy
depends on the precise localization of the epileptogenic focus
in native space [1l], [2]. It is important not only for the
resection of the entire epileptogenic area, but also for the iden-
tification of its relationship with eloquent areas in the cortex,
such as motor and language cortex [3]]. Especially for non-
lesional patients, the combination of both structural, i.e. high

field MRI, and functional modalities, such as positron emis-
sion tomography (PET) and single-photon emission computed
tomography (SPECT), is an essential part of pre-operative
investigation [4]. The very blurred functional images provide
information regarding the area with abnormal metabolism,
that points to origin of seizures [1], while detailed anatom-
ical images offer enough information for surgical planning,
either surgical resection or electrodes implantation. The co-
registration of different modalities in presurgical planning is
technically challenging, as multimodal images may present
large differences in intensity value distribution, in spatial
resolution and orientation [3]].

Image registration methods are divided into three categories:
point-based methods, surface-based methods and intensity-
based methods [6]. Point-based methods rely on a set of
corresponding fiducial points that are clearly discernible. Their
identification is usually based on interactive visual identifica-
tion of anatomical landmarks. Surface-based methods consist
of matching 3D boundary surface of anatomic structures. Im-
age segmentation pre-processing is required for extracting the
surface features. In principle, totally blind to spatial features,
intensity-based methods are applicable directly on image raw
data and require less anatomy-dependent pre-processing or
user interactions, because they take into account only the
similarity of voxel intensity. Looking for a data-independent
solution, a variety of similarity measures has been proposed.
The most successful similarity measures are information the-
oretic measures. In particular, the mutual information (MI)
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measure, thoroughly presented in [7]], [8], performs better in
the cases that the volumes are partially overlapped as the
measures are normalized with respect to the partiality.

The MMI-based registration is, indeed, an optimization
problem that looks for a geometric transformation 6 which
maximizes the mutual information I(S, F') of the voxel in-
tensities in S and F

0 = argmax I(S(x), F(Iyx)), (1)

where F' is a floating image, S is a reference image, and T’
is a geometric transformation with parameters 6 applied to a
point x.

Three processing stages are necessary before solving the
optimization problem expressed in Eq. [} the initial super-
position of the reference and floating images, the calculation
of probability density function, and the computation of mu-
tual information. Because, in theory, the solution should be
independent of the initial superposition, the existing proposals
differ mainly in the two latter stages. They show that minor
variations may yield remarkable differences either in the
registration robustness or in the convergence rate to a locally
optimal solution for 7y [9], [10]. Nevertheless, we propose
to study the impact of the first stage on numerical outcomes
in this work.

Contributions: Instead of smoothing the MI-function
with very sensitive application-dependent parameters, we are
motivated from the known results to seek a simple and intuitive
way for pre-aligning the multimodal volumes, represented
in the Digital Imaging and Communications in Medicine
(DICOM) format, such that their initial relative position is
close to the correct solution. Based on a comparative analysis
performed in this work, we propose to use the mask-based
filtered volume centroids and the direction cosine information
provided in raw image data for estimating the initial transfor-
mation of x. The differential of our proposal for creating a
mask is to involve an expert in the process. In the absence
of gold standard, we also contribute in this work with a
novel necessary condition, namely the direct-inverse matching
condition, for quantifying the estimated registration errors to
facilitate comparative analysis.

A. Related Work

Despite its success, MMI-based registration has still a
number of well-known drawbacks. Its main disadvantage is
that 7(.S, F) has typically many local maxima. A vast amount
of research has been devoted to relieve some probable roots
of the problem, namely probability distribution estimation and
interpolation artifacts, the choice of optimization technique
and the information-theoretic measure itself, in order to make
MMI-based registration algorithms widely applicable without
modality-specific pre-processing [9]], [10]. In addition, a series
of randomized experiments were performed to assess robust-
ness and reliability of the MI criterion. For the computed
tomography (CT) and MR images, it is reported in [10] that
within a large range of —25 mm to 25 mm translation and
—25° to 25° rotation around the correct position, there is only

a single strong optimum, which coincides with the correct
registration solution. In [7], it is reported 90% success rate
of convergence to near the correct solution, starting from a
randomized initial position using translational and rotational
offsets for each axis uniformly selected in the range of
[—25 mm,—25 mm] and [—10°,10°] around the ground truth.

We may assume as the rigid transformations around the
origin

RIy, =T, quz R¢T ’ R¢y
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where Ry _, Ry, and R% are rotations about z-, y- and z-axis,
respectively. Since the rotations are relative to the reference
volume’s center, we should first translate the reference volume
so that its center is at the origin by using the translation matrix
M enter- Next, we apply RT)p, and finally displace the results
back to the original center by means of M., . The sequence
of operations is

CTH = Mc_e}Lter - RTy - Meenter
Mc_ewlLter Ta- Ry, - Ry, - R¢y * Meenter- (2)

Maes et al. [8] briefly discuss pre-alignment by suggesting
to initially position the reference and floating images such that
their centers coincide and the corresponding scan axes of both
images are aligned and have the same orientation. We wish to
expand on this subject and, for this reason, we distinguish in
our study two kinds of rotational pre-alignment:

1) Mpar that aligns the scan axes, or the direction cosine
information in DICOM image data, of the floating
volumes with respect to the scan axes of the reference
one [8]]; and

2) Mpap that aligns the scan axes of the floating volumes
with respect to the axes of the patient-centered coordi-
nate system.

Denoting the  reference volume center as
rC=(rC,,rCy,rC,,1) and the floating volume center
as fC=(fCy, fCy, fC;,1), a trivial translational alignment
is to displace the floating volume so that the centers of both
volumes become the same. Once in the DICOM format the
origin of a volume is at the upper left hand corner of the
volume, the center fC should be rotated, when the floating
volume is rotated with respect to the reference volume
through MpaRrpap, i-e. Mpar or Mpap. For aligning two
centers, we should actually displace the rotated center of the
floating volume, fC" = Mpr|papfC, toward the center of
the reference volume.

However, the displacement to rC does not deliver a good
solution yet. This is because that the patients may not be
exactly centered with respect to the image volume. This
motivates several works to replace geometric volume centers
by geometric volume centroids rC=(rC,,rC,,rC,,1) and



fC=(fC,, féy, fC.,1) [6], [11]. Since the centroid estima-
tion is strongly dependent on the voxels of interest, some sort
of filtering or segmentation is required to remove samples that
are clinically irrelevant. Image processing techniques, such as
threshold-based filtering, morphology, connected component
feature extraction, may be employed [[L1]. In our analysis we
consider two kinds of translational pre-alignment:

1) Mpj, that makes the centroids of threshold-based filtered
volumes coincide, and

2) Mprc that leads the centroids of mask-based filtered
volumes to be coincident.

B. Technique overview

Composing the pre-alignment rigid transformation
Mpriprc - Mpapipar With CTy, we get a new expression
for the searched rigid transformation:

Ty CTy-Mpriprc - Mpapipar

= M_lter : Td : R¢z : Rq% . R@, : Mcenter .

cen

Mpriprc - Mpap|PAR; €)]

where the parameters of Ty, Ry, Ry, and Ry, should be
computed such that Eq. [1]is satisfied.

Once set the transformation model for 7y and assumed
Mp ap|par derivable from the direction cosine triplets in the
DICOM header, a question about implementation arises: how
to rapidly estimate the centroids of a noisy image to build
Mpr prc, once the noise may disguise valid samples?

We use the fact that the shape recognition is invariant for
healthy individual and that GPU (graphics processing unit)
resources allow rendering at interactive rate, and propose
an environment in which an expert may interactively adjust
the noise threshold as schematized in Figure 2] When the
displayed volume reaches the expected shape, the depth maps
of the visible surface are off-screen rendered and a volumetric
binary mask is built for extracting a filtered volume. The
procedure is detailed in Section

threshold

O
image of
filtered volume

Depth-maps H Binary mask h
filtered volume
T raw brain data

GPU | CPU

ray—casting
rendering

Fig. 2. Flowchart for a filtered volume.

II. TECHNICAL BACKGROUND

In this section, we present the classical formulation of rigid
transformation applicable to medical image registrations.

A. Rotations

The geometric transformation Mpygr that aligns
the orthonormal scan axes of a reference volume,
{(rwm> rzyy r$z7 O)a (ry:m Tyyy TyZ) 0)7 (Tzza sz7 TZZ, O>}5
and the orthonormal scan axes of a floating volume,

{(fa:xa fxy7f3:270)7 (.fya:;fyyafyzao)a (fZ.’tafzyv.fZZvO)}? is

Tra Tyr Tzx 0 fmr fxy fmz 0

_ Try Tyy sz 0 fyz fyy fyz 0

MPAR B Tez Tyz Tzz 0 fzx fzy fzz 0
0 0 0 1 0 0 0 1

To initially align the scan axes of the floating volume and the
patient-centered coordinate system with Mp 4p, the transpose
of the matrix built by the scan axes of the floating volume
may be used. This is because the scan axes are orthonormal
and the patient coordinate system is built from orthogonal unit
vectors.

B. Centroid

A centroid C of a volume is obtained by avera§i:ng the
© p

=1

position coordinates P; of all n valid voxels, i.e. C = =

III. NEW TECHNIQUE

Our technique aims at improving the convergence of Eq.
by applying initially on each sample x the pre-alignment
transformation Mpr pr.c - Mpappag. To enhance the es-
timate of the volume centroids that are necessary for building
Mpr prc, we propose a novel filtering technique to extract
valid voxels.

It is worth remarking that previous survey reports draw
attention to the importance of restraining the sample spaces
being registered in practice [6], [10], [9]. Therefore, the
extracted valid voxels also particularly suit to feed an MMI-
based registration algorithm.

In order to avoid tampering with the sample spaces and
to overcome the fact that the existing costly image process-
ing techniques fall far short of covering a large variety of
situations, we ask ourselves what is the best way to present
intermediary results to an expert and how s/he can provide
feedbacks in a simple and consistent way. Our solution is
to adopt the paradigm presented in [12] focusing on the
interface between an expert and the filtering algorithm. We
also propose a necessary condition, namely the direct-inverse
matching condition, for quantifying the estimated registration
errors to facilitate comparative numerical analysis.

A. Filtering

From the user perspective, the simplest way to filter out
the unwanted noises is to use the binary thresholding image
filter. Only one parameter should be set. If the voxel value
is above the specified threshold the output voxel value is
assigned as valid. Otherwise the output voxels are discarded.
In our experiments, we tried a series of normalized thresholds
et threshold - ang empirically we get 7=0.2
for most resonance magnetic images acquired with our hospi-
tal’s scanners.

T =



Binary threshold Mask-based

(b) 7=0.6

(a) 7=0.2

Fig. 3. Filtering the volume depicted in Figure [75}

The main problem we faced with the binary threshold
filtering technique is when the noise has higher intensity
values, as illustrates Figure |3_Elr However, if we increase 7 to
0.6, valid samples (a part of the neck) are removed as shown
in Figure B_Bl This stems from the fact that, differently from
the images acquired by CT scanners, the tissue responses to
the magnetic and other radiation excitations are diffuse. Most
brain components have large and overlapped response spectra,
which makes their filtering a very hard task. As consequences,
the joint probability distribution of the reference and the
floating volumes may be critically altered and the estimation
of centroids may deviate much from the correct ones.

Wu et al. present in [12] a way to remove only the samples
before the visible surface of interest whose intensity value is
above 7. In this way, all samples along the view direction
and behind the surface are preserved. Figure [3c|illustrates the
visualization of the outcomes of the procedure applied on the
same volume. Note that the noise removal has not affected the
head’s geometry.

(a) Top (b) Front (c) Back

Fig. 4. Filtering depth maps.

For estimating the volume centroids, the visible valid sam-
ples should be, however, numerically processable. Inspired by
the idea of image masks, we apply the algorithm presented
in [12] to generate, from the top, the front and the back
views, three off-screen depth maps with the expert’s specified
threshold as illustrated in Figure 4] Each depth map separates
the volume voxels in two sub-sets: the voxels that are on
the interior side of the head and the voxels that are on the
exterior side. Exploring this fact, we build with the intersection
of the interior sides of three generated depth maps a 3D
volume mask and apply it to extract brain region of interest.
Figure [3] illustrates how our proposed algorithm works. The
blue and the red arcs represent the top and the front depth
maps, respectively, and the blank region corresponds to the

region of valid samples that are further used in the centroid
estimation and in the co-registration.

exterior

interior

Fig. 5. Filtering with depth maps in 2D view.

B. Validation Test

It is a common practice to use the marker-based gold stan-
dard for evaluating the accuracy of registration methods [10].
However, it is not possible to implant fiducial markers in the
acquisition sessions of the Boldrini Hospital and Hospital de
Clinicas yet. To overcome this limitation, we devise other
procedures to monitor the behavior of our proposed algorithm.

Maes et al. already observed in [8] that the choice of the
floating image may affect the registration results. Nevertheless,
in theory, if the accuracy of our algorithm is good enough, the
role of the volumes to be registered should not impact much in
the registration results if they have the similar voxel sizes. A
necessary condition for a perfect registration of two volumes
A and B is, therefore, that the estimated registration matrix
Mj_,p, from A to B, is exactly equal to the inverse of the
estimated matrix M4, p, from B to A.

Figure [6] depicts this condition. In the figure, volume A and
volume B are drawn in red and green, respectively. The arcs
in solid line represent direct transformations, while the arcs
in dotted line denote inverse transformations. If the estimated
transformations are correct, the distances el and e2 must be
zero, because both direct (solid line) and inverse (dotted line)
transformations should lead to the same solution. We will refer
this necessary condition as direct-inverse matching condition.
With this reasoning in mind, we interchange the roles of two
unaligned volumes, A and B, in our experiments for checking
the behavior of MMI-based registration algorithm combined
with pre-alignment.

Fig. 6. Direct-inverse matching condition: el = e2 = 0.



IV. IMPLEMENTATION

As explained in Section[[lI-A] the key for achieving our pro-
posal is to get appropriate filtered volumes. Figure [2] schema-
tizes our proposed flowchart to get such filtered volumes.
Observe in the flowchart that we explore the GPU resources
to render the off-screen depth maps and the on-screen filtered
volumes. Two bottlenecks that may impair interactivity have
already been identified [13]]: the framebuffer bandwidth for
writing depth values and the overhead of transferring large
volume of data between CPU and GPU over PCI-e bus.

The modern GPUs are provided with up to 6GB video
ram and texture mapping units (TMUs) that have not only
texture caches but also up to 32-bit float processing capacity.
Therefore, for reducing the first bottleneck, we shift the access
of the depth buffer to the texture memory by storing the depth
maps as textures in the GPU. And, for alleviating the second
bottleneck, we transfer the raw volumes to the GPU as the first
step in the filtering algorithm. In this way, only the normalized
threshold (a floating-point value) should be sent to the GPU
at each interaction in the iterative loop presented in Figure

Another implementation strategy we adopted for improving
the performance is to use 3 depth maps (top, front and back),
instead of 6 depth maps (top, front, back, bottom, right and
left), to construct the binary mask volume. Experimentally, we
observe that the differences in the outcomes do not compensate
the time and memory overhead.

The last remark concerns the computation of Ty from
Eq.[3} In our implementation we consider that Ty is composed
of a sequence of 3D rotations followed by a translation,
and apply Powell’s multidimensional direction set method
to minimize each parameter. For the sake of simplicity, we
transform all the voxels of the floating image with (M enter -
Mpriprc- MPAP|PAR) before using Powell’s method to get
independently the 6 parameters in (Ty- Ry, - Ry, - Ry, ). The
initial values of these parameters are ¢.q = ¢y, = ¢z¢ =
de = dyO = dZO - O

Our implementation platform is a notebook ASUS
Intel® Core(TM)2 Duo T6600 2.2GHz with 2GB RAM and a
NVIDIA GeForce GT 220M with 1GB VRAM.

V. EXPERIMENTS

Nine LPS-oriented volumes of three patients have been
chosen to illustrate the reliability and the robustness of our
proposed procedure: (1) a set of T1-weighted (Figure [7a), T2-
weighted (Figure [7b), and partial, oblique FLAIR (Figure
MR volumes; (2) an off-centered T1-weighted MR volume
(Figure [7d), the corresponding CT (Figure [7¢) and PET
(Figure [7f) volumes; and (3) a CT volume (Figure [7g), the
corresponding ictal SPECT (Figure [7h) and interictal SPECT
slices (Figure [7i). Note that the SPECT volumes have been
pre-processed and most noise removed.

In Table [ we may observe that those volumes differ
greatly not only in the modality but also in the dimensions
and the voxel sizes. Although we are interested in the co-
registration of functional and structural images, we included
in our experiments the co-registration of structural images to

facilitate the accuracy assessment of the registration outcomes
in a qualitative way and to draw a parallel between the
visual quality and the numerical registration errors. It is worth
remarking that all patients enrolled in the present study signed
informed consent form approved by the Ethics Committee of
University of Campinas.

(1)
(b) T2 scan (¢c) FLAIR axial

scan

(a) T1 sagittal scan

(h) ictal SPECT (i)
SPECT

interictal

Fig. 7. Experiment volumes of three patients: (1), (2) and (3).

TABLE I
VOLUME SIZE (C.=COLUMN, R.=ROW AND S.=SLICES) AND ACQUISITION
RESOLUTION (VOXEL SIZES) OF THE IMAGES IN FIGUREE]

(C,R.,S) voxel sizes (C,R,S) voxel sizes
(a) | (180,240,240) (1,1,1) (b) | (120,240,240) | (1.5,0.9,0.9)
(c) (448,448,30) (0.5,0.5,5) (d) | (180,240,240) (0.99,1,1)
(e) | (512,512,110) | (0.5,0.5,1.5) (f) | (256,256,110) | (1.3,1.3,1.5)
(g) | (512,512,149) | (0.6,0.6,1.5) || (h) | (128,128,32) | (2.3,2.3,4.5)
(1) (128,128,68) | (2.3,2.3,2.3)

The structural MR images from Figure to Figure [7d|
were acquired in the same scanner (Philips Achieva 3T).
The other volumes were scanned in different hospitals — the
Boldrini hospital and our university teaching hospital, Hospital
de Clinicas. The CT and PET volumes were acquired in the
Siemens s5vb20b multimodal imaging scanner and the SPECT
images in the GE Millenium MG scanner. We remark that
even if the volumes in Figures were obtained in the
same session, in which the patient has not moved excessively
between acquisitions, their orientations differ slightly.

A. Comparisons of Pre-alignment Alternatives

In this section we show the performance of possible pre-
alignment alternatives presented in Section [[-B] Because the

pairs of volumes in Figures and Figures [7gH7i] have



Fig. 8.

Centroid estimation on the basis of binary thresholding volumes (M py, ): without angular pre-alignment and angular alignment with respect to the

patient reference system Mp 4 p (first row), with respect to the scan axes of reference volume Mp 4R (second row).

Fig. 9. Centroid estimation from binary mask filtering (M pr,c): without angular pre-alignment (first row), and angular alignment with respect to the patient
reference system Mp 4p (second row), with respect to the reference volume Mp 4 (third row).

(a) Aligned SPECTs

(b) raw CT, SPECTs data

Fig. 10. Ictal and interictal SPECTS and CT.

the largest discrepancy both in volume and in voxel sizes,
they pose several challenging numerical issues. From them we
may clearly perceive the difference in the registration results
when we change the pre-alignment transformation matrices.

Hence, they have been selected in our comparison experiments
even though they are not clinically useful. The relative location
and the orientation of three volumes before the registration
are shown in Figure [I0b] They are colored, respectively, in
grayscale, red and green.

In our assessment tests, we use the same MMI-based regis-
tration algorithm described in [[14]]. The procedure we adopted
is as follows. First, we co-register pairwise the volumes in
Figures and in Figures [TgH7i] Then, we apply the
obtained matrices to transform the coordinates of the SPECT
volumes from its original reference to the reference of the CT
volume. Finally, we compare visually the re-placed SPECT
volumes with the co-registered SPECT volumes illustrated in
Figure [10a]

Figures [§ and [9] present the outcomes of six proposed
pre-alignment combinations. The first column presents the



output of each pre-alignment procedure. This serves as input
to the MMI-based registration algorithm. The second and the
third columns show, respectively, the result of MMI-based
registration from the right-side and the left-side views. Finally,
the fourth, fifth and sixth columns present 200" axial slice,
256" sagittal slice and 75" coronal slice of the registered
volume.

In Figure [§] binary threshold filtering was applied to the
volumes before the centroid of each volume is estimated. For
the CT volume, the threshold 7 is 0.2, while for the SPECT
volumes, we chose 0.01. Observe that the first row of Figure|§|
shows the outcomes corresponding to the results without
angular pre-alignment and the results when we apply angular
pre-alignment with respect to the patient reference system.
This is because that the floating and the reference volumes
have their orientation coincident with the patient reference
system. In Figure [9] binary mask filtering is applied before
the centroid of each volume is estimated. The noise threshold
values for generating depth maps were 0.85 and 0.01 for CT
and SPECT volumes, respectively. Although the combination
of centroid estimation on the basis of filtered volumes and
angular pre-alignment with respect to the reference volume
(sixth alternative) does not yield the best pre-alignment, it
delivers the best registration from our 2D visual inspection: not
only the colors of SPECT volumes are well blended but also
their placements with respect to the skull are almost aligned.
From 3D visualization, we can perceive that there is almost
no region with pure red or pure green. Therefore, we select
the sixth procedure for pre-alignment and constrain our further
discussions on the analysis of this pre-alignment alternative in
terms of reliability and robustness.

B. Reliability

We consider a registration algorithm reliable if it has non-
significant registration errors. If we simply apply our proposed
registration algorithm on pairs of identical volumes, we expect
that the rotation angles and the displacements are exactly
zero. Nevertheless, due to numerical computation, we may
have numerical rounding and propagation errors. Applying the
procedure on the volumes depicted in Figure [7 the largest
angle differences with the reference solution occur in an
SPECT dataset for rotation around the x-axis (0.40 degrees)
and the largest displacement differences are translations in the
z-direction (-0.60mm). In sequence, the applied 7 is: 0.4, 0.51,
0.4, 0.45, 0.85, 0.73, 0.78, 0.01, and 0.01.

For qualitative assessment, we investigate visually 2D spa-
tial alignment by looking at continuity of tissue boundaries
in the two interleaved structural images in a checkerboard
pattern. The alignment is good if there is no discontinuity of
contours and the tissues merge smoothly across the checker-
board borders, as depicts Figure [T} And, for quantitative
evaluation, we assess the direct-inverse matching condition:
we consider as registration errors the differences between
the transformed position vector x by the estimated direct
geometric transformation parameters, M 4_, g, and the position
obtained by the inverse of the estimated transformation matrix

Mp_, 4. Since the errors are dependent on the distance of the
points from the center of rotation [8], we compute two kinds
of errors: centroid registration error (CRE), i.e. the distance of
the transformed centroids, and box registration error (BRE),
i.e. the maximum distance of the eight transformed scanned
volume’s corners. These corners are the vertices of the yellow
box surrounding the brain’s surface in Figures [3] and [7]

volume:

(a) Floating
FLAIR

(b) Floating volume: T2-
weighted

Fig. 11. Interchange of the roles of FLAIR and T2 volumes in registration.

C. Robustness

One may argue that our proposed interactive filtering pro-
cedure is prone to subjective interpretation which may affect
registration results. Therefore, we also evaluate how noticeable
the deviations of 7 affect the results. For simplicity, we
consider that the filtering threshold 7 may vary between
£0.10, and calculate the CRE and BRE errors of the points
transformed both by the matrix obtained with the 7 given in
Section [V-B] and by the matrix estimated with its deviations in
the worst situations. We consider as the worst situations when
the filter of one volume is added to 10% and the filter of
the other volume is subtracted from 10%. Figure illustrates
how these variations may affect a sample space.

(b) 7=0.73

(a) 7=0.63
Fig. 12.

(c) 7=0.83

The influence of 7 in the sample spaces.

VI. RESULTS AND DISCUSSION

On the basis of our experiments, we may draw some
concluding remarks with regard to reliability, robustness and
performance.

A. Reliability

As expected from MMI-based registration techniques [9],
[10], the volumes with larger voxel size, namely the FLAIR,
the PET and the SPECT images, have larger registration errors
when they are co-registered with volumes with smaller voxel
size. Pre-alignment has improved the convergence to numerical
solutions that seem close to the correct result.



Without resampling the images isotropically and consider-
ing the numerical errors in the registration of an image with
itself, the registration of the volumes of the patient (1) seems
fair under the direct-inverse matching condition. The errors
el and e2 increase consistently in accordance with the ratio
of voxel sizes. For the patient (2), we observe discrepancies
between el and e2. It follows from the fact that the physical
dimensions of the scanned volumes differ greatly. In the
registration of images of the patient (3) involving SPECT
modality, we observe that the CRE and BRE errors and
discrepancies between el and e2 are much greater although
their dimensions are of similar size. We believe that these
results are due to the fact that the PV interpolation schema
is insufficient to guarantee accuracy in the cases that the
reference voxel size and the floating voxel size differ greatly
from one another.

B. Robustness

Surprisingly, we perceive that when we change the threshold
7 the errors may be up to Imm. Further investigation leads
us to a plausible justification which is illustrated in Figure
The figure shows the variation of the sample spaces of the
volume represented in Figure Note that their shapes vary
noticeably in the range of pre-specified deviations. Certainly,
this affects the outcomes. In practice, neuro-experts hardly
make such large variations in their subjective decisions.

The most relevant result of this experiment is that the error
pattern seems the same for all tested cases. In addition, our
results support the conjecture presented in [8]: when an image
possessing intensity values with higher spatial correlation is
chosen as reference image, the registration is more robust.

C. Performance

The most costly stage is the computation of the joint
histogram necessary for determining the mutual information,
even a parallel approach based on reduction techniques is
used [[14]. Comparatively, the time for pre-alignment is negli-
gible. Among the presented experiment tests, the registration
time varies from 26s (the pair Figure [7Thk—Figure to 20
min (the pair Figure [7fk—Figure [7e). We observe that the time
performance depends critically on the volume data size of the
floating volume. The higher the volume size, the greater the
time spent. For example, when we change the role of the pair

Figure [Tfk—Figure [7¢] to Figure [Tek—Figure the time is

reduced to 3.8 min.

D. Limitations

We have exhaustively tested our proposed procedure in all
combinations of modalities available. Visually the outcomes
are plausible, but its reliability must be validated with more
objective means, such as intracranial eletroencephalogram,
results from pathology, and finally marker-based gold standard.
In addition, due to the hardware requirement, the implemented
procedure cannot be installed in any clinician’s personal com-
puter yet.

VII. CONCLUSION

Aiming to improve the accuracy of the epileptogenic focus
localization in nonlesional patients, we investigate in this work
an alternative to enhance the behavior of the MMlI-based
registration algorithm in native space. Differently from the
previous approaches focusing essentially on smoothing the
estimate MI-function, we analyze the impact of pre-alignment
on the registration of non-invasive functional and structural
images. Figure [I] illustrates the application of our proposed
procedure in clinical examinations.
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