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Estimating Curvatures and their Derivatives on Meshes of
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Abstract Estimation of local differential geometry proper-
ties becomes an important processing step in a variety of
applications, ranging from shape analysis and recognition
to photorealistic image rendering. This paper presents yet
another approach to compute those properties, with com-
parable numerical and accuracy performance to the previ-
ous works. The key difference of our approach is simplicity,
which makes it directly implementable on the GPU. Experi-
mental results are provided to underpin our statement.

Keywords Curvatures · Principal Directions · Differential
Geometry Properties · Computational Aided Geometric
Design

1 Introduction

The differential geometric properties characterize the vicin-
ity of each point of a surface, such as the area, the shape, the
maximum and minimum of the normal curvature, and the
principal directions associated to these curvatures. Some of
these quantities are of interest in image synthesis and anal-
ysis applications, such as anisotropic fairing of digital mod-
els (13), extraction of visually suggestive contours in order
to enhance shape cues (7), enrichment of visual appearance
with fine-scale details (20) and hatching strokes in pen-and-
ink style painting (17). In the context of 3D interactions, they
have also been shown useful for weighting the gravity func-
tion that causes the cursor to snap to ridges or valleys of a
surface (21).

The advent of highly capable GPUs has propelled re-
searches on estimation of local geometric properties on such
hardware. Today, real-time applications may employ GPU
shader programs to efficiently deform geometry immediately
before rendering. Hence, the associated per-vertex geomet-
ric properties, such as the tangent vectors, normal vectors,
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Fig. 1 Lighting a bump-mapped sphere deformed on the GPU. Left:
Using differential geometry properties of the original non-deformed
sphere (inset). Right: Using updated properties computed on the GPU
after the deformation.

principal curvatures and directions, need to be updated ac-
cordingly for using 3D detail mapping techniques and per-
forming correct lighting calculations. Figure 1 shows a bump-
mapped sphere deformed in the vertex shader by a Perlin
Noise displacement function and lit using Phong shading. In
the left, the sphere is lit without updating the tangent frames
after the deformation (the tangent frames are the same of
the non-deformed sphere, shown in the inset). In the right,
the sphere is accurately lit with tangent frames computed in
real-time on the GPU after the per-vertex deformation. For
rendering 3D details with correct silhouettes, higher order
quantities should be computed on-the-fly as well (20).

Basically, we may distinguish three approximation tech-
niques for computing differential geometry quantities of dis-
crete surfaces: patch-fitting, averaging, and curve sampling
methods. Averaging and curve sampling techniques are de-
fended, respectively, by Rusinkiewicz (18), Agam and Tang
(1). They claim that patch-fitting techniques tend to smooth
sharp corners and ridges, often requiring connectivity data
structure beyond the usual 1-ring of vertices or faces around
each vertex. Inspired by the accurate results achieved by
Max for the per-vertex estimation of normal vectors (14),
Rusinkiewicz proposes to take a weighted average of the ge-
ometric quantities of all adjacent faces of each point of in-
terest for calculating its curvatures and higher order deriva-
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tives. His proposal requires that normal vectors at each ver-
tex are provided and that the weights are appropriately se-
lected. Agam and Tang show that the curve sampling method
may accurately compute both the normal vectors and the cur-
vatures in the same framework. They point out that, as these
methods have a large degree of freedom, they are capable
of modeling the local surface geometry much more flexibly
compared with other techniques. However, instead of apply-
ing the formulation of the Weingarten equations, they deter-
mine the extrema of the normal curvatures by computing the
normal curvatures of all sampling curves and, then, selecting
the directions that presents minimum and maximum normal
curvatures. The quality of the curvature estimation depends,
therefore, on the sampling coverage.

We present in this work a proposal for computing the lo-
cal geometry properties of second or higher order derivatives
on the basis of a set of neighboring sampling points that lie
on the distinct directions with respect to a vertex of interest.
It differs from the work of Agam and Tang in that we do not
select the extreme values of the normal curvature among the
samples. Adopting the scheme devised by Rusinkiewicz, we
use the quadratic differential forms and the finite-difference
form of the shape operator to compute the maximum and
the minimum of the normal curvature. Consequently, the re-
sults tend to be more stable using only the 1-ring neighbor-
hood. We, however, take advantage of the curve sampling
approach to improve efficiency of the algorithm devised by
Rusinkiewicz. Instead of two processing passes – one over
adjacent faces and one over vertices, we present a proce-
dure that requires only one pass. From the experimental re-
sults, we observed that the gain in efficiency compensates
the slight degradation in accuracy for irregularly sampled
meshes.

To be self-containing, a brief overview of surface differ-
ential geometry is provided in Section 2. Section 3 presents
related works, while Section 4 describes our proposal for es-
timating curvatures and their derivatives on the curve sam-
pling basis. Although surface normals play an important role
in the curvature estimation (8), we will consider in this work
that the tangent frames, composed by normal, tangent and
bitangent vectors, are somehow accurately computed. This
is because that there is a variety of efficient algorithms for
computing these elements of first derivatives. In Section 5,
comparisons of our proposal to previous work in terms of ef-
ficiency and robustness are given. Finally, some concluding
remarks are drawn in Section 6.

2 Background

We may represent a surface S as a net of parametric curves,
such that every point P on the surface is a crossing point of
two of them. Mathematically, we may express S as a func-
tion r(u,v) = (x(u,v), y(u,v), z(u,v)) that maps a point (u,v)
in a certain closed interval Ω onto a three-dimensional space
ℜ3. The real variables u, v are called coordinates on S . At
P the vector ru = ∂r

∂u is tangent to the curve r(u,vconstant),

and rv = ∂r
∂v is tangent to the curve r(uconstant ,v). If the vec-

tors ru and rv do not vanish and have different directions at
every point, we say that r(u,v) is a regular surface.

Let α(t) = r(u(t),v(t)) be a curve on S that passes
through P . The vector at P

dr = rudu+ rvdv =
[

ru rv
][

du
dv

]
. (1)

is tangent to the curve α(t) and therefore to S .
The infinitesimal squared length ds of an element of arc

of α(t) in the vicinity of P can then be expressed in a
quadratic or bilinear form, in terms of the differentials U =[
du dv

]t
, which is known as the first fundamental form

ds = dr ·dr =
[[

ru rv
][

du
dv

]]t · [ ru rv
][

du
dv

]

=
[

du dv
][

ru · ru ru · rv
rv · ru rv · rv

][
du
dv

]

=
[

du dv
][

E F
F G

][
du
dv

]
= U t

ISU . (2)

Observe that the inner product is symmetric at every point
F = ru · rv = rv · ru.

According to Eq. 1, all vectors dr at P are linear com-
binations of ru and rv, thus lying on the plane spanned by
these two vectors. This plane is the tangent plane at P to
S . Its unit normal vector is given by

n =
ru × rv

‖ru × rv‖ =
ru × rv√
EF −G2

. (3)

The variations of the tangent vector of the curve α(t) =
r(u(t),v(t)) at P define the curvature vector k of α(t). Thus,
the curvature vector is an element of second derivative. Its
projection over the normalized normal vector n of S at P
is called the normal curvature vector

kn(α(t)) = kn(α(t)) ·n ,

where kn(α(t)) is the normal curvature of α(t) at P and
depends on the shape operator −dα(t)n:

kn(α(t)) = −dα(t) ·dα(t)n
dα(t) ·dα(t)

= −dα(t) ·dα(t)n
IS

. (4)

The normal curvature depends on the shape operator or the
derivative of the normal n along the tangent direction of
α(t) = (u(t),v(t)) at P ,

dα(t)n =
∂ n
∂u

du+
∂ n
∂v

dv. (5)

Eq. 5 is called the second fundamental form and may
also be written in the bilinear form

−dα(t) ·dα(t)n =
[[−ru −rv

][
du
dv

]]t · [nu nv
][

du
dv

]

=
[

du dv
][−ru ·nu −ru ·nv

−rv ·nu −rv ·nv

][
du
dv

]

=
[

du dv
][

e f
f g

][
du
dv

]
= U t

IISU . (6)
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As the coefficients of IS and IIS transform appropriately
under allowable change of coordinates, they are called the
metric and the curvature tensor, respectively.

For the basis {ru,rv}, the Weingarten equations express
the derivatives of the normal to a regular surface in terms of
this basis[

nu
nv

]
=

[
f F−eG
EG−F2

eF− f E
EG−F2

gF− fG
EG−F2

f F−gE
EG−F2

][
ru
rv

]
= W

[
ru
rv

]
(7)

Although there is an infinity of curves on S passing
through P and possessing the same tangent at this point,
the Theorem of Meusnier tells us that all of these curves
have the same normal curvature.

The direction of the normal curvature vector always re-
mains that of the surface normal. Only its length may vary
for different directions. The directions in which the normal
curvature becomes extreme at P are called principal di-
rections, {e1,e2}, and the corresponding normal curvatures
are denominated principal curvatures, κmin and κmax. The
principal directions and the principal curvatures are, respec-
tively, the eigenvectors and the eigenvalues of W. The prod-
uct

K = κminκmax. (8)

of the two principal normal curvatures is called Gaussian
curvature and their arithmetic mean

H =
κmin +κmax

2
(9)

is called the mean curvature.
In some applications, the elements of third derivatives,

namely the differentiations of IIS, are of interest. It is be-
cause that they are helpful in quantifying the surface fairness
(10). To define a differentiation in such a manner that the
derivative of any tensor is again a tensor, the concept of ab-
solute differentiation or covariant derivatives is introduced.
Gravesen and Ungstrup show that the covariant derivatives
of IIS is a trilinear symmetric tensor 2× 2× 2 with coeffi-
cients ci jk given by (10)

a = c111 = ruuu ·n+3ruu ·nu

b = c112 = c121 = c211 = ruuv ·n+ ruu ·nv +2ruv ·nu

c = c221 = c122 = c212 = ruvv ·n+ rvv ·nu +2ruv ·nv

d = c222 = rvvv ·n+3rvv ·nv (10)

These derivatives define the tensor of curvature derivative
CS.

Using the principal directions {e1,e2} as the local basis,
these coefficients may be written as the directional deriva-
tives of the principal curvature vectors kmin = κminn and kmax
= κmaxn along the principal directions, that is

a = De1 kmin b = De2 kmin c = De1 kmax d = De2 kmax (11)

3 Related Work

Given a mesh of points, an accurate estimation of local dif-
ferential geometric properties of the underlying surface for
each sample vertex is, despite of a number of works, still a
challenge issue.

Several techniques have been proposed for computing
the elements of a tangent reference frame, which is an or-
thonormal basis composed of a normal vector at a surface
point and two perpendicular vectors (the tangent and bitan-
gent vectors). While most of them consider that the tan-
gent and bitangent vectors are aligned with the texture co-
ordinates (12), there is a variety of proposals for accurately
estimating the normal vectors on the basis of the adjacent
face normals (9; 5; 19; 14). Using the functionality of tex-
ture sampling on the vertex shader in Shader Model (SM)
3.0 (16), Calver proposes making available to the GPU ver-
tex and adjacency data stored in textures. Based on this ap-
proach, the author devises an algorithm for computing face
and vertex normals entirely on the GPU, after the vertex-
level deformations (4).

To our knowledge, the geometric properties of second
and third order, namely the curvatures and their derivatives,
are still not robustly computable on GPUs due to its com-
plexity. In this section, a brief description of three paradigms
of techniques for estimation of geometric properties is pro-
vided: patch-fitting methods, averaging methods, and curve
sampling methods.

3.1 Patch-fitting Techniques

One of the most traditional methods for estimating the dif-
ferential properties from triangle meshes is by approximat-
ing a parametric surface to a local region of mesh points,
then computing the matrix W from Eq. 7 analytically us-
ing the parametric derivatives of this surface (11). Mostly,
this surface is represented in the tangent frame associated to
the vertex of interest P , so that we may consider that W is
equal to −IIS. For estimating properties of second order, the
lowest order suitable is a quadratic surface (19).

Goldfeather and Interrante (8) find, however, that the ro-
bustness of the tensor IIS depends on how the local region
around P is approximated by parabolas along the direction
of the edges passing through the adjacent vertices. Approxi-
mation errors are greater in meshes sampled irregularly since
in such cases the number of analytical surfaces that may fit
in the same neighborhood of points is greater. To obtain bet-
ter estimates of the principal directions, they propose higher
order surfaces combined with the information of surface nor-
mals available at the adjacent vertices. The idea of exploiting
the information of the normals at each adjacent vertex was
followed by other techniques based on the 1-ring neighbor-
hood beyond patch-fitting methods (18). It has shown to be
especially important for obtaining robust results in irregu-
larly sampled meshes.
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According to Agam and Tang, the main drawback of this
class of techniques is to be incapable of accurately modeling
the local surface geometry and to introduce a strong element
of smoothing t that may reduce the accuracy of the curvature
estimation (1). Rusinkiewicz points out the ambiguity of the
calculus of curvature at configurations of geometry with ver-
tices coincident with two intersecting lines. In such regions,
either a planar or hyperbolic surface fits the point set (18).
We hypothesize that, if we model the vicinity of a point as
a set of curves, we may gain flexibility in describing abrupt
variations around a vertex.

3.2 Averaging Methods

This approach is based on the ability of estimating a cur-
vature tensor for each edge and then averaging the tensors
computed for the edges within a mesh region around each
vertex. It considers that, for each edge E of a triangle mesh,
there is an associated minimum curvature in the direction
along the edge, and a maximum curvature in the perpendicu-
lar direction that crosses the edge on the tangent plane. Such
condition allow us to define a curvature tensor IIS for any
point on the edge, and the average of the tensors computed
for the edges inside a given region around any vertex P .
Because the point has its own tangent frame, the coordinate
transformation law must be applied on IIS of each edge be-
fore averaging.

The techniques of approximation by curvature tensor av-
eraging do not suffer from the deficiencies of the patch-
fitting approach at hyperbolic points. However, other config-
urations may accumulate errors that are not minimized even
when increasing the number of edges used in the evaluation
of the average. One of these configurations is found at the
poles of a geodesic sphere build up from the subdivision of
a tetrahedron (18). At these pole points, the estimation error
does not decrease as the mesh refinement increases.

Trying to solve the deficiencies of curvature tensor aver-
aging techniques (6; 2), Rusinkiewicz proposes a new tech-
nique of approximation (18) based on the idea of Goldfeather
and Interrante (8). He uses the already available vertex nor-
mals at the vertices in the 1-ring neighborhood. For com-
puting weights, he found that the “Voronoi area” weighting
presented by Meyer et al. (15) produces the best estimates
of curvature for triangles of varying size and shape. Similar
to the traditional algorithms for computing vertex normals,
the tensor IIS is first computed for the faces and then esti-
mated for the vertices through averaging of the tensors of the
adjacent faces. Hence, two passes are required. Moreover,
the computation of the Voronoi area weighting is somehow
cumbersome. Our conjecture is that, by applying the curve
sampling approach we may simplify the procedure without
degrading the accuracy of results.

3.3 Curve Sampling Techniques

Instead of fitting a patch to points in a local neighborhood of
the point of interest P , a set of curves leaving P in distinct
directions is sampled for curvature estimation.

For discrete surfaces, the estimative of the normal curva-
ture in the direction of an edge between a vertex P to q can
be obtained by the formula of the curvature of the osculating
circle that spans these vertices (5; 15):

κPq = 2
(P −q) ·nP

‖P −q‖2 (12)

where nP is the surface normal at P . By combining equa-
tions 4, 7 and 12, we obtain a linear equation system. This
system can be solved for IIS through linear least squares (5).
When comparing this set of equations with those obtained
with the quadratic surface approximation, we observe that
they differ only with respect to the type of curves approxi-
mated in the direction of each edge: parabolas, for the ap-
proximation by quadratic surfaces; circles, for the approx-
imation by normal curvature. Therefore, the estimative by
normal curvature suffers from the same weaknesses of the
approximation by analytical surfaces.

To overcome this restriction, Agam and Tang propose
to fit the local neighborhood of the vertex P with a set of
quadratic curves, then calculate the normal curvature of each
curve separately (1). The directions along the minimum and
maximum curvatures are chosen as principal directions. The
estimation accuracy relies strongly on the sampling coverage
and on the estimation accuracy of the normal curvatures.

To be less sensitive to the sampling frequency, we fol-
low Goldfeather and Interrante and propose to overcome the
mentioned restriction by substituting for Eq. 12 the expres-
sion of directional derivative of normal curvature given in
(18), which also considers the information of the vertex nor-
mals at each adjacent vertex.

4 Our Proposal

We propose a new method for computing second and higher
order elements of discrete differential geometry of arbitrary
meshes. The approach is capable of computing, for each ver-
tex, the curvature tensor IIS and therefore the principal cur-
vatures and directions, but also the coefficients of the tensor
of curvature derivative CS. Our proposal focuses on the fol-
lowing requisites:

– Efficiency: The total amount of time for estimating the
curvature tensor, principal curvatures and directions, and
tensor of curvature derivative should allow the algorithm
to be used in real-time for models composed of thou-
sands of vertices on current desktop hardware. In order
to do that, we consider the possibility of using the band-
width and stream processing power of today’s GPUs for
performing the estimation. The instruction set and data
structures used by the algorithm should be simple enough
to allow such portability.
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– Coverage: The algorithm should avoid restrictions with
respect to the topology of the model. In particular, the al-
gorithm should be capable of dealing with surfaces with
holes, meshes with irregular sampling and different ver-
tex valences. It also should handle the lack of data about
face orientation, so that the only required connectivity
data should be the 1-ring neighborhood of each vertex,
possibly without a winding order.

– Robustness: The algorithm should satisfactorily estimate
differential geometry properties for the configurations
considered problematic for the methods cited before: col-
linear points and points of intersection between two lines.
In digitized models, the presence of outliers should be
minimized in comparison with the cited methods.

None of the techniques presented fulfill all the requi-
sites exposed above. Though the techniques based on the
patch-fitting and curve sampling approaches are suitable for
stream processor architectures and, therefore, are very effi-
cient, they do not produce results robust enough for arbi-
trary meshes. On the other hand, the techniques based on
curvature tensor averaging are robust, but cumbersome to
implement on a stream processor due to the need of com-
plex data structures or multiple execution passes. For in-
stance, the technique by Alliez et al. (2) requires a costly
pre-processing for determining which edges (and in which
amount) are inside a region around each vertex. Likewise, in
the algorithm proposed by Rusinkiewicz (18), the averaging
between the curvature tensors at the faces requires at least
two processing passes, which hinders its use on the GPU.

In order to satisfy the requisites above, our proposal tries
to combine the robustness of the algorithms based on the
averaging method, and the simplicity and efficiency of the
methods based on the curve sampling technique. It stands
out as an adaptation of the algorithm by Rusinkiewicz, both
for computing the curvature tensor as well as the tensor of
curvature derivative.

4.1 Estimating the curvature tensor

For each vertex P , we estimate IIS in the tangent reference
frame {U,V,n}, so that we may assume that IIS = −WS.
Replacing it in Eq. 7, the derivative of the normal vector n
in a given direction x on the tangent plane passing through
P is expressed by

IISx = Dxn (13)

On a smooth surface, the vector x may assume any direction
perpendicular to the normal vector n. On a mesh with 1-
ring neighborhood, these directions can be approximated by
vectors from P to each vertex qi of the 1-ring neighborhood.
Similarly, the directional derivatives of the normal vectors
can be approximated by the difference of the normal vectors
previously estimated at the vertices. We remark that both the
differences of positions and normals should be expressed in

the reference frame {U,V,n}. Hence, Eq. 13 may be written
in the following finite-difference form

IIS

[
(qi −P) ·U
(qi −P ·V

]
=

[
(nqi −nP) ·U
(nqi −nP) ·V

]

which may be expanded into[
(qi −P) ·U (qi −P) ·V 0

0 (qi −P) ·U (qi −P) ·V
]
 e

f
g


 =

=
[

(nqi −nP) ·U
(nqi −nP) ·V

]
, (14)

where qi, i = 1,2, ...,n, are n vertices in the 1-ring neighbor-
hood of P . This system is solved for IIS using a linear least
squares algorithm. As in the implementation by (18), we use
the LDT t decomposition method.

Differently from Rusinkiewicz, our proposal performs
the calculation directly with respect to the vertices, in a sin-
gle running loop, because it does not require additional com-
putations for transforming the tensor IIS computed on the
faces to the tangent plane at the vertices.

4.2 Estimating the tensor of curvature derivative

To estimate the tensor of curvature derivative, we resort to
Eq. 11 which gives us a simple way to obtain CS in coordi-
nates relative to the principal directions. In order to do so,
we first compute IIS and then extract its eigenvalues (princi-
pal curvatures) and eigenvectors (principal directions). The
principal directions become the new basis vectors {e1,e2}
on the tangent plane at P . Now we can express each di-
rection Ei =

−−→
Pqi in these new coordinates. We then obtain

the following system of equations which expresses, by finite
differences, the minimal and maximal curvature variations
along distinct directions Ei with regard to the principal di-
rections:

CS

[
Ei · e1
Ei · e2

]
=

[
∆κmini ∆κmaxi

∆κmini ∆κmaxi

]
, i = 1,2, ...,n, (15)

where ∆κmini and ∆κmaxi are, respectively, the difference be-
tween the minimal and maximal normal curvatures at ver-
tices qi and P , that is,

∆κmini = κminqi
−κminP

∆κmaxi = κmaxqi
−κmaxP

In an analogous way that we obtain the finite-difference form
for computing IIS, we may expand Eq. 15 to explicit the
coefficients a, b, c and d of the tensor CS


Ei · e1 Ei · e2 0 0
0 Ei · e1 Ei · e2 0
0 Ei · e1 Ei · e2 0
0 0 Ei · e1 Ei · e2







a
b
c
d


 =




∆κmini

∆κmini

∆κmaxi

∆κmaxi


 , (16)

and solve it through a linear least squares technique, again
using LDLt decomposition. The computation of the eigen-
vectors and eigenvalues is done by Jacobi iteration.
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Fig. 2 RMS error of Gaussian curvature estimation on a discretized
torus as a function of increasing sampling randomness. Bottom: Wire-
frame torus with minimum sampling randomness (left) and maximum
randomness (right).

5 Experimental Results and Discussions

We have implemented our algorithm both on the CPU and
GPU. On the CPU, the algorithm was implemented in C++
using the LAPACK library (3). Methods based solely on the
1-ring neighborhood of vertices, such as the approximation
by quadratic surface, cubic surface (8), normal curvature and
tensor averaging (18), were also implemented with this li-
brary in order to perform a fair comparison with our algo-
rithm when running the robustness tests.

From our experiments, we observed that the technique
proposed by Agam and Tang, though delivers good results,
is sensitive to the sampling coverage and frequency. The
nonexistence of a robust algorithm for adaptively choosing
appropriate sampling coverage makes it impractical in some
situations. Hence, we have decided to limit the comparisons
of our model with the algorithms presented by Rusinkiewicz,
Goldfeather and Interrante.

Figure 2 shows a comparison, for different techniques, of
the RMS error for estimating the Gaussian curvature (Eq. 8)
of a discretized torus as the surface sampling becomes more
irregular. Two wireframe renderings of the torus show the
minimum and maximum mesh sampling irregularity used.
The normals were computed as the normalized sum of the
normal vectors at the faces (9). These results show that the
algorithm by Rusinkiewicz has the smaller proportional in-
crease in the estimation error due to sampling irregularity.
Our algorithm produces similar results, though slightly less
accurate. The remaining techniques are more accurate only

Fig. 3 RMS error of Gaussian curvature estimation on a discretized
torus as a function of increasing vertex displacement along the exact
vertex normal. Bottom: Wireframe torus with minimum (left) and max-
imum (right) displacement.

when the torus is regularly sampled, as they assume the sur-
face is locally polynomial, a condition fully satisfied by the
torus. Nevertheless, they are more sensitive to sampling noise
even when considering polynomial surfaces.

Figure 3 compares the RMS error for estimating the Gaus-
sian curvature of the discretized torus as noise is added to
the vertices. The vertices are displaced along fixed normal
vectors computed analytically. Our technique produces the
most accurate results in this case. In contrast, the techniques
of approximation by quadratic surfaces and normal curva-
ture produce gross estimation errors, as they do not use the
normals to counterbalance the displacement noise.

Figure 4 shows the color-coded visualization of the prin-
cipal curvatures for a horse model (48,484 vertices, 96,964
triangles) and a bunny model (72,027 vertices, 144,460 tri-
angles). The colors are modulated with the model’s diffuse
shading. The amount of outliers, which come out as small
isolated colored dots, is relatively low in our technique and
visually equivalent to the results of Rusinkiewicz. The re-
maining techniques produce more outliers as a result of the
existence of local configurations considered problematic for
these approaches. The results of the estimation by curve sam-
pling of normal curvature are not shown, as they are visually
identical to the quadratic approximation.

For the timing tests, we have compared our technique
with that of Rusinkiewicz (18) due to the similarity of ro-
bustness results with those of our algorithm. In that case,
both algorithms were implemented using optimized code.
The test platform was a AMD Athlon XP 2000+ 1.67GHz
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Quadratic approximation

Quadratic approximation

Goldfeather and Interrante (8)

Goldfeather and Interrante (8)

Rusinkiewicz (18)

Rusinkiewicz (18)

Our method

Our method

0

0κmin < 0 κmin > 0

κmax < 0

κmax > 0

Fig. 4 Color-coded principal curvatures for a horse and bunny model according to different estimation approaches.

with 512MB RAM, and a low-end GPU NVIDIA GeForce
FX 6200 AGP 8x with 256MB VRAM.

On the GPU, the algorithm has been implemented as
two SM 3.0 pixel shaders in HLSL (16), one for estimat-
ing the tensor of curvature and another one for the tensor
of curvature derivative. The implementation of the linear
least squares algorithm and Jacobi iteration on the GPU is
straightforward, since the operations involved are conven-
tional arithmetic ones that are supported by current graph-
ics hardware. Following the paradigm of using the GPU as
a general-purpose stream processor, geometry and connec-
tivity data are encoded previously in floating point textures.
These textures are accessed on the pixel shader that outputs
the computed values to render textures which are then used
by the application.

Figure 5 shows the performance for computing the cur-
vature tensor (including the computation of principal cur-
vatures and directions) and tensor of curvature derivative in
comparison to (18). The processing time for our algorithm
on the GPU is shown as well and includes the time for trans-
ferring the textures to and from the GPU. From these re-
sults we see that our method on the CPU is about two times
more efficient for the tested model. This is mainly because
the algorithm performs all the computations in a single pass.
This simplicity, which allows us to port the algorithm to the
GPU, improves the efficiency to real-time rates even in low-
end graphics hardware. In general, we have seen that our
algorithm has a significant increase in performance with re-
spect to the technique of Rusinkiewicz, at a minor cost of
decreasing the accuracy on irregularly sampled meshes. For

Fig. 5 Performance for estimating the curvature tensor and tensor of
derivative curvature on the horse model, in milliseconds.

digitized models, the decrease of accuracy is hardly notice-
able.

Figure 6 shows some screenshots of a demonstration that
we have implemented to visualize the estimated differential
geometry elements computed in real-time on the GPU. In
(a) we show a knot model with principal curvatures visu-
alized as colors using the color code shown in Figure 4.
In (b) we show the Gaussian curvature of a teapot model
in grayscale. Darker and lighter tones correspond to nega-
tive and positive curvatures, respectively. Middle gray cor-
responds to zero. Notice that the surface is locally hyper-
bolic when K < 0 (darker), parabolic or planar when K = 0
(mid-gray), and elliptical when K > 0 (lighter). In (c) we
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(a) (b) (c)

(d) (e) (f)

0

0

< 0

> 0

|CS|

Fig. 6 Visualization of differential geometry properties estimated by our algorithm on the GPU. (a) principal curvatures using the color code
shown in Figure 4; (b) Gaussian curvature, in grayscale; (c) mean curvature, in grayscale; (d, e) principal directions; (f) magnitude of the tensor
of curvature derivative.

show the mean curvature (Eq. 9) of a bunny model, also
in grayscale. The principal directions of a teapot and knot
model are shown in (d) and (e), respectively. The red ar-
row points to the tangent direction of the minimum curva-
ture, while the green arrow points to the tangent direction
of the maximum curvature. In (f) we show the color-coded
visualization of the magnitude of the tensor of curvature
derivative (|CS| = c2

1 + c2
2 + c2

3 + c2
4, where c1, c2, c3 and c4

are the non-symmetrical components of the tensor). Images
with higher resolution and source code of the demonstra-
tion are available at http://www.dca.fee.unicamp.br/
projects/mtk/batagelo.

6 Conclusions

We have presented a curve sampling algorithm for estimat-
ing second or higher order local elements of discrete differ-
ential geometry for arbitrary meshes. The algorithm is sim-
ple to implement, as it requires only the 1-ring adjacency
information of each point (not necessarily ordered) and the
associated normal vectors to increase accuracy in compari-
son to traditional patch-fitting and curve sampling methods.
On a single loop over the vertices, it performs the estimation
by sampling the curves in the direction of each edge leaving
each vertex, then solving a system of linear equations that
relate the directional derivative of the normal curvatures to
the tensor.

The algorithm is efficient in comparison to methods with
similar accuracy, and is suitable for porting to the stream ar-
chitecture of current GPUs. As shown in our timing tests,
this allows the real-time computation of curvature tensors
(including the extraction of principal directions and princi-
pal curvatures) and tensors of derivative of curvature even
for models composed of thousands of vertices. As a further
work, it motivates us to develop a 3D interaction toolkit that
use the differential geometry properties to correctly perform
direct manipulation with geometry deformed on the GPU.

According to the robustness tests, the accuracy of our
method is greater than previous methods based on 1-ring
neighborhood of vertices when considering irregularly sam-
pled meshes and digitized models. In comparison to the tech-
niques implemented, it produces the most accurate results
on models with displacement noise. For irregular meshes,
it produces slightly inferior results to the tensor averaging
method proposed by Rusinkiewicz. However, the differences
are hardly distinguishable, and the benefits of efficiency (al-
most half the time of (18)) and portability (adaptation to
stream architectures) greatly overcome this. Nevertheless,
we would like to further compare our results with the ones
computed analytically, especially with the values of deriva-
tive of curvature.
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