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Abstract

A procedure for tracing completely closed loops given implicitly by the intersection of two
regular surfaces, without resorting to the parametric domain subdivisions or resulting in arc
overlapping, is presented. Our primary hypothesis is that the rotation index, a global geo-
metrical property, may be a useful complementary tool to the local differential geometrical
properties for improving the efficiency of the well-known marching-based surface—surface
intersection algorithms. To validate this hypothesis, we devised a novel approach for incre-
mentally computing the rotation index of a closed plane curve given implicitly while the
curve is traced. Moreover, we also proposed its integration in a marching procedure that
employs adaptative circular steps.
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1 Introduction

The main motivation of this paper is the problem of tracing, without overlapping, a
closed curve given implicitly by surface—surface intersection (SSI). SSI is a fun-
damental problem in computational geometry and geometric modeling of com-
plex shapes. For general parametric surface intersections, the most commonly used
methods include subdivision [4,10] and marching [2,3].

Marching-based algorithms begin by finding a starting point on the intersection
curve, and proceed to march along the curve. Local differential geometric proper-
ties are applied to adaptively determine the marching steps [1,4,14,17,18]. Because
that the intersection of two regular surfaces may be closed loops, stopping condi-
tions at the starting point are necessary to avoid overtracing. By a loop, we mean
the intersection curve whose pre-image in the both parametric domains of the in-
tersecting surfaces is a closed (plane) curve [12]. Traditionally, before any tracing
is carried out, the loops are detected and broken into a set of open branches, for
which the stopping condition consists simply in reaching either the parametric do-
main border or (rarely) any singular point [9,11,12,13]. In this work, we present a
novel technique that applies the rotation index, namely the number of times that the
tangent vectors of a plane curve turns 360 degrees, to appropriately tactnt-

ously, without resorting to domain partitioning. With this technique, we may spare
the pre-processing (loop detection and domain subdivision) and the post-processing
(sorting of the separately traced point sequences) that are usually required.

A regular closed plane curvef classC'®) is given by a parameterization|a, b] —
R? with continuous derivatives up to ordérsuch that the first order derivative
ét) = cM(t) # 0 Vt, ande(t) and all its derivatives up to orddr agree ata
andb; that is,c(a) = ¢(b) (closeness conditionj(a) = ¢(b) (tangent matching
condition),. . ., ¢®(a) = ¢ (b). This set of conditions is equivalent to say thas
a periodicC'®) function of period(b — a).

¢(a) = ¢(ty) = ¢(b) P //0(2)(a) =@ (ty) = @ (b)

Figure 1. Overtracing the terminating point.

Figure 1 illustrates a case such that the local geometrical conditions do not suffice
for getting the terminating point. Starting the tracingat ¢(a), the closeness and

the tangent matching conditions are satisfied wRen c(¢,) of the curve is passed
(dashed line). However, the tracing should not stop, because onel[aop| is still



missing (dotted line). If the rotation index 2 of the curve is considered, the check
of the rotation of the tangent vectors may be enough for knowing when to stop to
obtain a complete and non-overlapping tracing.

Being the rotation index a global geometrical property, which is invariant under a
large range of deformations, it is less sensitive to the local relative spatial place-
ments of the traced points, as are the local geometrical properties. If the rotation
index of the curve is known a priori, approaching the starting point may be easily
checked with the help of the number of turns the tangent vectors rotate along the
tracing curve. We also advocate that the rotation index may be useful in adjusting
the tracing step sizes. Larger step size are computationally more efficient, but tends
to overcross the starting point. Thus, with use of the rotation index, one may re-
duce the marching step size only in the vicinity of potential terminating points for
appropriately stopping the tracing.

The standard definition of the rotation index involves an integration of the curva-
ture (and hence, the second order derivatives) which requires the explicit param-
eterization of the curve. No methods are known in the literature that can estimate
the rotation index of a curve given implicitly by the intersection of two surfaces.
The primary contribution of this paper is to present an expression that relates the
rotation index of a regular closed plane curve withritgpositively,n negatively
oriented parameterized loops ahgdbranch points with (net) multiplicity greater
than two

l

nc:(m—n)—ij. (1)

Jj=1

The concepts of parameterized loops and net multiplicity are explained in Section 2.
Essentially, they are defined on the basis of the branch (transversal self-intersection)
points. The complete proof of the relation is given in Section 3. This relation (Eq. 1)
provides an alternative way to compute the rotation index of a closed curve without
knowing its parametric representation. It tells us that, from a set of non-overlapping
oriented parameterized loops that builds a regular closed plane curve, one can de-
termine its rotation index. On the basis of this equation, we devise an algorithm that
can compute the rotation index of a closed curve given implicitly by the intersec-
tion of two regular surfaces, if the curvedgsntinuously traced starting at a point

that does not lie in the vicinity of a self-intersection point. The branch points can
be reliably computed, since they must be the pre-images of the intersection points
where the surfaces are tangent.

The second contribution of our work is the integration of the novel rotation index
algorithm in a marching-based algorithm for ensuring complete continuous tracing.
We used the circular-step-marching procedure proposed by Wu and Andrade [18],
since it works well when the curve contains singularities up to fourth order contact
without abrupt change of normal directions. The key point for the integration con-



sists in incrementing or decrementing the rotation index whenever a pair of branch
points is matched under the restriction that its associated parametric loop does not
overlap any previously detected parameterized loops. Section 4 gives an algorithm
that uses the estimated rotation indices to select the potential vicinities of the start-
ing point. Only in the potential vicinities, the step size is diminished for carefully
monitoring the local geometrical properties. It is worth remarking that only in one
of these potential vicinities there is a point that satisfies the local geometric con-
ditions. Hence, for the sake of performance, the step size is restored whenever the
tracing leaves an incorrect vicinity.

Some numerical results are given in Section 5 and our concluding remarks are made
in Section 6.

2 Rotation Index and Self-intersection Points

Therotation indexor turning numberof a regular closed plane cureela, b] — R?

is the algebraic number, of times the (oriented) tangent vectét) of a curve
rotates along the curve with respect to a fixed axis [5,7,15]. The rotation indices of
the curves in Figure 2.a, Figure 2.b, Figure 2.c are, respectively, 2, -1, and 0.

Figure 2. Rotation index.

Let ¢(t) be a regular closed plane curve parameterized by a generic paranieter
is possible to obtain a curvés) parameterized by arc lengttwhich has the same
trace as:(t). The curvaturé:(s) can be defined as the derivati@éﬂ, wheref is
the angle that the tangent vector makes withatleexis. Sinces = |¢(t)|, we may
write

/ k(s)ds = / K(D)E(0)]dt = B(a) — O(b) = n2,



from which we derive an expression for the rotation index by the integer

b
ne=o- [ (oot 0

As we see next, this integer number is invariant under the regularly homotopic
deformations and we use this fact to derive Eq. 1.

Definition 1 [8] Two regular curvesc (t) and c,(t) are said to beregularly ho-
motopig if there exists a continuous functié® such that eaclt, (t) = H(t,u),
u € [0,1], is a regular curve and’y(t) = ci(t) andCy(t) = c»(t) are the given
initial curves.H is a continuous deformation from(¢) to c»(t) and is called a
regular homotopy

Proposition 2 [5] Two regular closed plane curves are regularly homotopic, if
and only if, they have the same rotation index.

A consequence of this proposition is that there are only three classes of curves to
one of which any regular closed plane curve is regulaly homotopic.

Proposition 3 [5] Every regular closed plane curve is homotopic to one of the
following curves:

(1) asimple curve positively or negatively oriented (Figure 3a),
(2) the eight-shaped curve (Figure 3b), and
(3) aC, curve withn loops all positively or negatively oriented (Figure 3c).

n-loops

(@) (b) (c)

Figure 3. Three classes of closed plane curves.

Hence, if we know how to reduce a closed curve to one of the three patterns of
curves, the computation of the rotation number is trivial. However, for deriving the
rotation index from the number of the singular points of a curve, we must consider
the rotation index of piecewise regular plane curves.

Definition 4 [8] Let ¢:[0,w] — R?* be a continuos function, with continuous
derivatives up to orde and c/(t) # 0, except at a finite number of points,
apg=0<a; <ay <--- < a, = w, such that there exist the right and left hand



limits (¢(a; 1) = limy_,,+ ¢(t) andé(a;~) = limg_,,— ¢(t)) for the tangent vector
ata;. Then we say thatis a piecewise regular plane curvd/henc(0) = c¢(w), it
is also a closed curve.

For a piecewise regular closed plane curve, the rotation index is defined by adding
the “jJump” angles at the singularities as follows.

Definition 5 [8] Let ¢: [0, w| — R? be a piecewise regular closed plane curve. Let
ap =0 < a; <ay <--- < ap = w be a partition such that|[a;, a;1] iS regular
andq;, —m < «; < 7, denotes theriented exterior angléom ¢(a; ) to ¢(a;)),

1 <i<k-—1,anda, the angle from:(a, ™) to é¢(ap™) = ¢(ag™). The number

b;

k
C—QLZ K(t ]dt+—ZOQ 3)

i=1g,

is therotation indexof c.
The magnitude of the oriented exterior angld, in radians, can be determined by
¢(a;) - é(a;")

|é(ag)lé(an)]

and its sign, by the sign of the third coordinate of the cross pradugct) x ¢(a; ).

(4)

cosq; =

The next proposition establishes thatis always an integer, as it is for regular
closed plane curves. The proposition also tells us|ihais invariant under isome-
tries of R and change of variables wich preserve orientatiton.

Proposition 6 [8] The rotation index:,. of a piecewise regular closed plane curve
is an integer. Moreover,.. is invariant under orientation-preserving change of vari-
ables or direct isometries adk". An orientation-reversing change of variables or
reflections inR™ will change the sign of..

For our algorithm we also use the fact stated in the next proposition.

Proposition 7 [7] The rotation index of a piecewise regular simple closed plane
curve ist 1, where the sign depends on the orientation of the curve.

We introduce the following definition to characterize and classify the self-intersection
points.

Definition 8 Let c: [a,b] — R? be a regular closed curve. A poift = c(t) =
(x(t),y(t)) is aself-intersection pointf there are at least two parametets t, €
la,b], t1 # tg, such thatP = ¢(t1) = c(t2). Themultiplicity of P is the number



of points inc™!(P). A point is said to besimple (multiple, double triple) if its
multiplicity is 1 (>1, 2, 3).

We further distinguish the self-intersection points at which the cefffectively
crossedtself either transversally or even with equal unit tangents.

Definition 9 Let c: [a,b] — R? be a regular closed plane curve and Bt =
c(t1) = c(t,) be a self-intersection point. If the orientation from the vecior — <)
to the vector:(t, — ) and the orientation from the vecta(t, + ¢) to the vector
¢(ty + 1) are the same for small and positigveand ¢, then we say thaP is a
branch point relatively td¢,,t; } and we callt,,t; } a branch pairOtherwiseP is
denominated #&angential point relatively to the tangential péis,t; }.

Algebraically, the condition for being a branch point may be translated as

[c(t1 — ) x c(ta = ¥)] - [e(tr + &) x é(t2 + )] > 0. )

Observe that a transversal double point (a point at which the tangents are not coin-
cident) is a branch point (Figure 4a). But, if we have just one tangent at a double
point, we may have either a branch (Figure 4b) or a tangential point (Figure 4c).

(@) (b) ()

Figure 4. (a) A transversal branch point; (b) A branch point with coincident tangents; (c) A
tangential point.

As we will see in Proposition 12 the tangential points can be disregarded in the
computation of the rotation index. Through a regular homotopy, we may slightly
move a small arc containing a tangential point away from the remaining part of
the curve (Figures 5 and 8). In this process, we reduce the multiplicity of a self-
intersection point, without affecting the rotation index of the curve. This motivates
us to introduce the definitions okt multiplicityandparametrized loop

Definition 10 Let” a multiple pointand—*(P) = { ¢y, -, t;, - - tx}. t; is called

a branch generataf there exists; # ¢; such thatP is a branch point relatively
to {¢;,t;}. Thenet multiplicity of a pointP on the curve is the number of points in
¢~ *(P) which are branch generators.
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(@) (b)

Figure 5. A point with multiplicity 4, but net multiplicity 3.

Figure 5.a exemplifies a curve|0, 1] — R? with two double points (multiplicity 2)
and a point with multiplicity 4, sincec™*(P) = {t1, t, t3, t4 }. We may, however,
apply a regular homotopy to a vicinity oft,) to “pull” it slightly in the direction

of the solid arrow and remove a tangential pair (Figure 5.b). The net multiplicity of
P is, therefore, 3. Note that the rotation index of both curves is

Definition 11 Let A = [to, t1) U[ta, t3) U+ Utp_1,tn), a < to < t1 <ty <tz <
s < t,_1 < t, < b,wheretq, to, - - - t,_1, t, are the branch generators of The
restrictionc: A — R? is called aparametrized looff the following conditions are
fulfilled:

(1) ¢|.A has net multiplicity equal to 1, for atl

(2) c(t1) = c(ta), c(t3) = c(ty), c(ts) = c(ts), - - - c(tn—2) = c(tn_1),
(3) c(to) = c(tn),

(4) to andt, is a branch pair.

If there is no branch generator if)the above conditions will not be violated and
we will assume that is itself a parametrized loop.

If ¢(t) is a regular closed plane curve, each parametrized b@p a piecewise
regular closed plane curve, which has no self-intersections except at the tangential
points. The rotation index (defined by Eq. 3)&is eitherl or —1 according this

loop is either positively or negatively oriented.

Whenever a starting point and the orientation are fixed, we can order all the branch
generators sequential and periodically along the parametric domain and use them to
partition this domain into non-overlapping (with no arc intersections) sub-intervals
such that each of them is delimited by branch pairs. This partition is unique and
each oriented parametrized loop corresponds to a subset of these sub-intervals.
Besides, the sum of the rotation indices of the oriented parametrized loops ob-
tained from any partition must be the same. In Figure 6 we illustrate four different
partitions of a curve in parametrized loops. The branch pairs are drawn in distin-
guishing shapes and their corresponding parametrized loops in lines with differ-
ent width. Observe that, although the curve is represented by different functions



(©) (d)
Figure 6. Different parametric partitions for the same curve.

¢ [a, b)) — R? having different starting point;(a), the sum of the rotation indices
of the parametrized loops is 2 for all of them.

To proceed to relate the rotation index of a curve with its parametrized loops, we
first point out that if a branch point has multiplicity two, the algebraic sum of ori-
ented exterior angles & relatively to the two adjacent loops is zero (since we have
crossing tangents and the exterior angles have reversal orientation). This will imply
that for a closed curve which has only multiple points of this type (simple cross-
ings) the rotation index is just the algebraic sum of the indices of its parametrized
loops (Proposition 13). Note that the curve given in Figure 6 is an example of this
case.

If the net multiplicity of a pointP; is greater than 2, the algebraic sum of the ori-
ented exterior angles of all itgsadjacent parametrized loops is a (signed) integer
multiple k; of 2r. This implies that we must include in the equation given in Propo-
sition 13 a correction fac:tozgz1 k;, wherel denotes the number of branch points
with net multiplicity greater than two. A general expression (Eg. 1) that relates
the rotation index and the number of oriented paremetrized loops is then reached
(Proposition 14).

Let’s give a geometrical view of this correction factor. For a p@nwith net mul-
tiplicity greater than 2 ire(¢), one can always perturb the vicinity &f through a
small continuous deformation and reduce it to one of three curves listed in Proposi-
tion 3. Depending on the singularity & additional loops with reversal orientation



may appear. The number of these loops corresponds to the number of complete
turns we must jump to completely trace the cue® and they must be taken off
from the algebraic sum of the individual rotation indices of parametrized loops.

Figure 7a illustrates a closed curve having two points with net multiplicity greater
than 2 (n=6, n=1, k;=0, andk,=0) and its deformation into &5 curve (a closed
curve with 5 loops). This result can be predicted from Eq. 1, ennce (6 — 1) —
(0+0) = 5. Figure 7b shows a closed curve having two petal-shaped poimts, (

n=4, k1=1, andk,=-1) into an eight-shaped curve. The result is also predictable
with use of Eq. 14, = (4 —4) — (1 — 1) = 0). We also remark that, after the first
deformation stage, both the curves only possess points with multiplicity at most
two and in Figure 7b only two loops with reversal orientation appeared at the final
stage of the deformation.

‘%“@' «'J““

Figure 7. Regularly homotopic deformations.

3 Analysis

In this section we prove the correctness of Eq. 1. The proof, concluded in Propo-

sition 14, is constructed from two statements to be firstly developed: Proposition

12 which ensures that the tangential pairs can be ignored in the computation of the
rotation index of a closed curve and Proposition 13 which establishes the rotation
index of curves with at most simple crossings.

Proposition 12 Any regular closed curve, is regularly homotopic to a curvé
which has no tangential pairs. The new cué/es coincident with; out of a neigh-
borhood of the original tangential pairs.

PROOF. Let 1(t) be a bump function that slightly displaces, without overlapping
c1(t), a tangential point (¢,) relatively to the pairt;,t,} and its vicinity from

10



c1(t1) in the direction of the curvature vectei (t) = (t)n(t) of ¢1(¢), such as
co: [a, b] — R? defined by (Figure 8)

Cl(t) ift € [a, to — 5],
ca(t) = 4 er(t) + p(t)ny(t) ift € (ty — 0,15 +9),
e (t) , otherwise.
)=o) ey g
alty). = alt Co(ta —0),/ LN ca(ta +9)

Figure 8. Slight deformation from (¢) to ca(t).

Using the classical’> Cauchy functiors: R — R (Figure 9)

0 if £ <0,
o] ,

+e exp(—7) if t >0,

Figure 9. Cauchy function.

we define the bump functiom R — R as follows (Figure 10)

A
a4 ta4d b

Figure 10. A bump function.

Note thate; (t) andey(t) will not intersect in the neighborhood of by appropri-
ately choosing the sigft and the value of.

11



Hence, the functiot{: I x I — R?

c1(t) if t € [a,ty — 0],
H(t,u) = e (t) +up(t)n,(t) if t € (ty — 6,ty +6),
c1(t) if t € [ta +9,0]

with ¢ € [0, 1] can defornr; (¢) into co(¢) without the tangential paift;, 2 }.

H is a continuous function ari(¢,0) = ¢ (t), H(t,1) = c»(t). Moreover, for a
fixed u, C,(t) = H(t,u) is a regular curve. To see this, we may assume, without
loss of generality, that; is parametrized by its arc length. Henég,(t)| = 1 and
n1(t) = —k(t)é1(t) by the Frenet formulas. So, we have

(1) fort € (ty — d,t2 + 0)

Cu(t) = e (t) + wir(tyna(t) + up(t)in (t)
= (1 = up@)r(t))er(t) + uin(t)na(t).
This means that for conveniently small
Cu(O)? = (1= up(t)s()* + (ult))® > (1 — up(t)s(t))* > 0.

(2) fort € [a,t,—08]U[ty+4, b], we can see that, (t) = ¢ (t) Yu, sinceji(t,—6) =
f(te +0) = 0.

Once there exists a continuous functithsuch that eacld, (t) = H(t,u), u €

[0, 1], is a curve fronC,(a) to C,(b) andCy(t) = ci(t) andC,(t) = c,(t) are the

given initial curves¢; (t) andesy(t) are regularly homotopic curves. From Proposi-

tion 2, we conclude that; () andc,(t) have the same rotation index.

The same procedure can be applied recursively to all other tangential pairs of the
original curvec; in order to finally get the curvé regularly homotopic te; and
without tangential pairs.

g.e.d.

Proposition 13 Once a starting point is fixed, if all the points of a regular closed
plane curve have net multiplicity at most two, then the rotation index is

Ne =m —n, (7)

wherem andn are the number of positively and negatively oriented parametrized
loops of this curve.

12



PROOF. To emphasize the geometric idea involved, let us consider first the case
of a curvec: [a, ] — R? with just one branch paift,, >}, a < t; <ty < b. Then,
according to Eq. 2

flg = — [/ |dt+/ \dt+/ (t)|dt].

Rearranging this sum according to its two parametrized ldgpnd L., we have

ve= L[ wtti <>rdt+</ \dt+/ (1)), ®

t1

Since we have crossing tangentsPat= c(t,) = c(t2), for any parameterization
the exterior angles of,; and £, at P have the same value but with reversal
orientation. Adding the term — « to the right-hand side of Eq. 8, we get

nc:%(fﬁ( £))é ()]dt+a)+—(/ ydt+/ (t)|dt — a). (9)

t1

According to Proposition 3, there are three classes of geometric arcs. It is then
necessary to show that for all of them we may describe the rotation index of a
curve as the algebraic sum of the rotation indices of its parametrized loops.

If we consider that both loops are positively oriented (Figure 11.a), then the exterior
angle of one loop, say,, is in the same sense (positive) and the exterior angle
of another is in reversal sense (negative). It follows that the sum of terms inside
each pair of parentheses in Eq. 9 corresponds exactly to the rotation index of a
parametrized loop. Then, we may writgas a function of the rotation index of the
parametrized loops. ., andn,. .,

Ne = Negy + Neygy = 2.
An analogous argument holds to show the proposition in the cases both loops are
negatively oriented (Figure 11.b).

If we consider that both loops have reversal orientation, then the exterior angle
of the positively oriented loop, sag, is positive and the exterior angle of the
negatively oriented loop, saf, is negative. Then, the terms inside the first pair of
parentheses in Eq. 9 correspondZtoand inside the second pair . Clearly,

Ne = MNegy — Ne£y = 0.

13



(@) (b) ()

Figure 11. Exterior angles of parametrized loops.

This proof can be extended to a general closed curiee b — R? with at most
simple crossings anda) = ¢(b). Once a parameterization (also a starting point) is
fixed, we consider the decompositionaahto parametrized loops,, L, - - -, L,,.

Leté = {t;, -, tx1},a =1ty <ty < --- <ty = b, be the union of all the branch
pairs ofc(t). The rotation index can be written as

=y / ore

We may rearrange this sum taking into account the parametrized Iopp$ c,
j=1,--- g, each of which is the image @¥(;) disjoint segments

N() bt

ne=5-33 [ wle)lan.

jillltl

Since each singularity of a loop consists of a simple crossing and the algebraic sum
of the exterior angles of the two adjacent loops at this crossing is zero, the same
reasoning of the simplest case can be applied.

Replacing conveniently each term and knowing that, by symmetry, the terane
cancelled at the common image of the parametrized branch pairs, we may express
the rotation index of (with m positively oriented and negatively oriented loops)

as

ne =m(+1) +n(—1) =m —n. (10)

g.e.d.

Let us illustrate the application of Eq. 10 in the curves plotted in Figure 6. They are,
in fact, the results of the partitioning of the same curve into distinct parametrized

14



loops. We have in (an=3 andn=1; (b) m=2 andn=0; (c) m=3 andn=1; and (d)
m=2 andn=0, all of which lead tou. = 2, as expected.

We point out in the proof of Proposition 13 one essential fact we applied in the
derivation of Eq. 1: the sum of the exterior angles of two adjacent loops at a simple
crossing is zero. At a point with net multiplicity greater than two, we can only assert
that the sum of exterior angles of the adjacent loops is an integer multipteanid

this correction factor must be included in the expression of the rotation index of the
curve, as we see next.

Proposition 14 The rotation index of a regular closed plane curveartitioned
into m positively and: negatively oriented loops withpoints whose net multiplic-
ity is greater than two is given by

ncz(m—n)—Zk‘j,

Jj=1

N

) s s

wherek; = 212% with N(7) denoting the number of the parametrized loops
adjacent to the branch poirR; and«;; representing the exterior angle of each of
these adjacent loops.

PROOF. Letc:[a,b] — R? be a regular closed plane curve withbranch points
andc(a) = c(b). Leté = {t1, -+, tx_1},a =1ty <ty < --- <t = b, be the union
of all the branch pairs of(¢). Then the rotation index af can be written as

We may rearrange this sum taking into account the parametrized Iboptc,
i=1,---,q,each of which is the image d@f(:) disjoint intervals

ne= =YY [ R, (11)

Since each parametrized loop is a piecewise regular simple closed plane curve, its
rotation index is

1 L)t L(i)

ne = 520 [ sl + > a50) = £1

1,8

15



whereq; ; is the exterior angle of; at a singular poinP;. From this fact,

1 L) tis 1 ZL(i)

= / K(D)E(0)]dt) = +1 — %:J (12)

Denoting(+1),. the rotation indexs-1 or —1, relative to the loofC; and replacing
Eg. 12 in Eq. 11, we obtain

! ZLQ Qi

i=1

If ¢ hasm positively andn negatively oriented loops, we may replace the term
i1 (£1), bym(+1) +n(—1) and get

¢ L@
nC:m_n_Z%‘
T

i=1

Once each exterior angtg ; is associated to a unique branch point, we may recol-
lect the summation in the above expression in terms of tbeanch points

NG
ZL: Zp:(]l) Qjp

Ne =M —"N —
2 ’

j=1

where N (j) is the number of the parametrized loops adjacent to the branch point
P;.

The algebraic sum of the (two) exterior angles at a branch point with net multiplic-
2

ity equal to two ISZ,,%;%;) = 0. Therefore, by considering only tlhé&ranch points

with net multiplicity greater than two, we may rewrite the expression in the form
(Eq. 1)

!
nczm—n—ij.
i=1

g.e.d.

Figure 12 shows two petal curves considered positively oriented. In Figure 12a, it
is a 11-petal curve which hasr as the sum of exterior angles of the parametrized
loops at the singular point. The rotation index of the curve is, therefares

11— =7(m=11,n = 0andy k; = 4). The 6-petal curve in Figure 12b with

2

16



(@) (b)
Figure 12. (a) A 11-petal curve and (b) a 6-petal curve: both have rotation index 7.

the sum of exterior angles equal+@r has also the rotation indéx— (—3—;) =7
(m=6,n=0and} k; = —1).

Corollary 15 If the algebraic sum of the exterior angles at each branch point is
+27, then the rotation index of a curve may be obtained from the expression [16]

ne=(m—n)— (K —Ky), (13)

where/C; and K, are the number of branch points with positive sim)(and the
number of branch points with negative sur(), respectively.

PROOF. This follows immediately from the rearrangement of the s@‘]@l k;
into two groupsk; = >, k; with k; > 0 andkC, = | X, k| with k; < 0.

g.e.d.

4 A modified Marching Algorithm

The underlying idea of Eq. 1 is that we may reduce the computation of the rota-
tion index of a curve to the evaluation of the local behaviour of the branch points,
namely we should (1) determine the number of matching branch pairs whose as-
sociated parametrized loops do not have arc intersections, and (2) distinguish the
branch points that have net multiplicity greater than two for computing the total
algebraic sum of exerior angles at them.

For the first item, we propose to use a stack to remember a branch generator that
has been traced (push the traced branch point and its respective branch generator in
the stack) and to go back to the pairing branch generator (pop all the stacked branch
generators till the matched branch generator) to close a parametrized loop without
overlapping the existing ones. And for the second item, we allocate a cell to each
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singular point for storing its multiplicity and the algebraic sum of the exterior an-
gles. In principle, each branch point must have at least two branch generators after
completing a round along a closed loop given implicitly by two regular surf&ces
andsS,, as summarizes the following algorithm. We consider in the algorithm that
the given tracing step sizein the direction of the tangent vectois sufficient for
trapping any starting point.

Algorithm 1 Rotation Index Algorithm

Require: a starting pointP, of the curve:, which is not a singular point; a tracing
step sizd.; an empty stack;
n. < 1; {Initialize the rotation index.
t < tangent vector of the curve @&;
i<1;
repeat
pE=Pi+ Lt
P; <= improved coordinates gf through Newton iterations;
if S; andS, are tangential atP; then
Determine the singular poin®;
if Pis notin the stackhen
pushP in the stack;
allocate toP a cell for storing the multiplicity4 < 1) and the algebraic
sum of the exterior angles#m <« 0);
else
g < g + 1;{Increment the multiplicity of.}
if P is abranch pointhen
pop out all the branch generators in the stack till the closest matcheable
branch generator;
in- or decrement:. according to the orientation of the loogUpdate
the rotation index with regard to the parametrized logps.
n. < n. - %5 {Restore the rotation index.
Update the algebraic signed sunu(n) of the exterior angles of the
parametrized loops adjacent to!(P);
n. <= n. + =, {Update the rotation index with regard to the new sum
of the exterior angle$.
end if
end if
else
t < tangent vector aP;
end if
Increment i
until the local geometric properties &%, andP; are almost the same.
P,, < P, {Store the terminating poiri.

Exahustive tests have shown that, if the starting point is not a singular point, the
closeness and the tangent matching conditions are sufficient local geometrical prop-
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erties for evaluating the terminating poiRf, with respect to the starting poifiy,
namely,

Closeness condition:|| PyP,, || < e.
—

t P, P —
Tangent matching condition: | =23 . £n20 — 1| < ¢, wheretp, is the tangent

Itpoll 1PRPoll
vector of the curve dp,.

In this section we present a modified marching algorithm which integrates the pro-
posed rotation index algorithm in the marching algorithm with circular steps pro-
posed by Wu and Andrade [18]

Algorithm 2 Marching Algorithm with Circular Steps

Require: a starting pointP,; its adjacent point on the intersection cur#g; the
arc angleL
1, < tangent vector aP,;
1, < tangent vector aP;;
<2
repeat
Determine, on the basis &_,, P;_,, #;_», and#;_;, a point p on the aproxi-
mating osculating circle oP;_; with the anglqﬁi_\l equal toL;
P; <= improved coordinates of p with Newton iterations;
7, < tangent vector aP;;
Increment i;
until #; is not defined.

Wu and AEssio sketched in [16] the estimation of the rotation index from the sin-
gular points that are met while marching along a curdefined implicitly by two
regular surfaces; andS,. We may use the parametric domain of eitigror S,

for computing the rotation index, when the curve is closed in both of the domains.
Although this index is subjected to modifications while the curve is traced, one can
use the intermediate values to distinguish the potential terminating points and to
adaptatively adjust the step size, in such a way that the starting’Boodnnot be
overcrossed. The potential terminating points are the points for which the algebraic
sum " of the variations of the tangent vectors in the chosen parametric domain
satisfies the rotation index condition:

Rotation Index condition: | > —2n.7| < 7.

This slight modification has not only avoided over-tracing but has also improved
the performance of the tracing procedure as well: We may trace with large step size
whenever we are not in the vicinity of a potential terminating point and the local
geometrical conditions should only be evaluated when we are in the vinicity of a
potential terminating point.
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Algorithm 3 Modified Marching Algorithm

Require: a starting (regular) pointP,; its adjacent (regular) point on the intersec-
tion curveP;; e (closeness and tangent matching conditioms{rotation index
condition); arc anglel; an empty stack;

n. < 1; {Initialize the rotation index.
> < 0; {Initialize the sum of the variations of tangent vectprs.
A < L; {Initialize the arc anglek
1, < tangent vector aP,;
1, < tangent vector aP;;
<=2
repeat
Determine, on the basis & _,, P;_1, t,_», and#;,_;, a point p on the aproxi-
mating osculating circle oP;_; with the anglqﬁ%_\l equal toA;
P; < improved coordinates of through Newton iterations;
if S; andS, are tangential afP; then
Determine the singular poing;
if Pis notin the stackhen
pushP in the stack;
allocate toP a cell for storing the multiplicity4 < 1) and the algebraic
sum of the exterior angles#{m < 0);
else
g < g+ 1; {Increment the multiplicity oP.}
if P is a branch pointhen
pop out all the branch generators in the stack till the matcheable branch
generator;
in- or decrement:. according to the orientation of the looglUpdate
the rotation index with regard to the parametrized logps.
n. <= n. - %=, {Restore the rotation index.
Update the algebraic signed sunu(n) of the exterior angles of the
parametrized loops adjacent to!(P) in the parametric domain of
Si;
n. < n. + %52, {Update the rotation index with regard to the new sum
of the exterior angles.
end if
end if
end if
7, < tangent vector aP;;
Increment®_ by the amount of variation a)t__{ to t_; in the parametric domain
of Si;
if | > —2n.m| <n & | PoP;i || < 100e & branch generators are paired &
= L then
A<=g;
else if| 3> —2n.7| > n & A = 5 then
A<= L;
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end if

Increment i
until (| > —2n.7| < n & each brach point in the stack has at least two branch
tm PP —
generators &|| PyP;; || < € & |=Lo% - ==L0 1| < €) V (£, is not
it 41l 1PiaPoll

defined).

5 Examples

To illustrate how the proposed modified marching algorithm works, we present in
this section some numerical results. We set 0.001, n = 0.5 and initialize the

arc angle withL = 0.1radians. For each example we present three figures: the

intersection curve ink® and their pre-images in the parametric domains of the

regular surfaces from which the curve is defined implicitly.

The first pair of surfaces to be tested is the following: (Figure 13)

S (u,v) @ F(u,v) = (u,v,0.2 % u* + 0.1 % v?)
Sia(s,w) 1 G(s,w) = (s,w,0.3% % xw — 0.1 %w? + 0.2 x w3).

These surfaces define implicitly a curve which is regularly homotopictpaurve.

éuvj o, v, DE%usd + 0.1%4 )

sw-sw 0.3%s~2% — 01" 2 + 0.2"w3

(1.20,0.97,0.51)

(1.20,0.97)

Damain of F Damain of G

(1.19,0.94)
(0.0,1.0)

(0.0,0.0)

Figure 13. Intersection df1; andSis.
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Tracing starts at the poirst; (1.20,0.97)=(1.20,0.97,0.51). When the branch point
511(0.0,1.0) is passed, it is pushed into the stack. Progressing the marching, the tan-
gential point(0.0, 0.0) is reached before we return to the branch p6&int0.0, 1.0)

and complete a turn along a (positively oriented) parametrized loop. Hence,
incremented by 1. Further steppings with= 0.1 are performed till the point
(1.19,0.94), when the sum of variations of the tangent vectors in the parametric
domain ofS;; becomesl2.554 (|12.554 — 2n.7| = 0.01 < 0.5), its distance to

the point(1.20,0.97) is 0.03 < 0.1 and there is a pair of branch generators associ-
ated to the poinb;,(0.0,1.0). Therefore, the arc angle is reduced for approaching
carefully the starting pointl.20, 0.97) in the parametric domain ¢f;;. The termi-
nating point we reached 50003 far from the starting point and its tangent vector
makes an angle of 0.00006 with respect to the tangent vector at the starting point.

The second pair of surfaces to be considered is the following: (Figure 14)

So1(u,v) @ F(u,v) = (u,v, (u? + v?)* + 3 x u? x v — v3)
Saa(s,w) : G(s,w) = (s,w,0).

Their intersection results in curves with a triple point/id and in the parametric

domains. All of them are regularly homotopic t@a curve.

Féuy):(uJ Y, U+ 243 070 2%y -y 3)
s =05, w, 0

(0.14, 0.88, 0.0)

(0-147 0-88> Diomain of F Domain of G
VZEN
(0.17, 0.80)> FanY
(00,000 == ‘_..’_,.'*-
o ) Co .

~=

Figure 14. Intersection &fy; andSs,.

Tracing starts at the poish; (0.14, 0.88)=(0.14, 0.88, 0.0). The branch poin$; (0.0, 0.0)

is passed three times while the curve is tracedsS(1)0, 0, 0.0) is pushed into the

stack; (2) the second branch generator is added and the sum of the exterior angles,
in the parametric domain dfy;, of the two potential parametrized loops adjacent

to this point is updateds(m = 1.8925 - 1.8925 = 0); (3) the third branch generator
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is included, the algebraic sum of the exterior angles at this point is updated again
(sum =1.8925+ 1.8925 + 2.4980 =~ 6.283 = 27), and the rotation index is accord-
ingly adjusted . = 3 (parametrized loops) %= = 2). At the point(0.17, 0.80), the

sum of the tangent vector variations in the parametric domain satisfies the rotation
index condition [12.3923 — 2n.7| = 0.17 < 0.5), its distance tq0.14, 0.88) is
0.0784, and all the branch generatorsSef(0, 0,0.0) are paired. Hence, the arc
angle L is narrowed. The iteration stops at a parametric point whose distance to
the starting point i9.0004 and whose tangent vector makes the angle @j05 in
relation to the tangent vector at the starting point. We remark that we used the dis-
criminant method proposed by Ye and Maekawa [19] to get precisely three tangent
directions at the branch poitst; (0.0, 0.0).

The third pair of surfaces to be considered is as follows: (Figure 15)

Ss1(u,v) @ F(u,v) = (u, v, (3u? + 3v?))
Ssa(s,w) : G(s,w) = (s,5(s* +w?) — 1L, w+1).

Their intersection determines in the parametric domains a pair of disjoint simple
curves.

Flu=(u, v, 302 + w2))
£ =(5, 50752 + w2y - 1.0, we1.0

(—0.02,0.73,1.59)

(—0.32, —0.45,0.92)

(—0.02,0.73) Domain of F Domain of G
(0.07,0.72) / -'
(—0.3199, —0.449) L

(—0.32, —V R

Figure 15. Intersection df3; andSss.

The subdivision scheme was used to obtain the two starting points. From the point
S31(—0.32, —0.45)=(—0.32, —0.45, 0.92), the smaller closed curve was traced, while
the bigger one was traced from the poffy; (—0.02,0.73)=(—0.02,0.73,1.59).

Along the smaller curve, the program identifies that the sum of the tangent vec-
tor variations in the parametric domain 6§, reaches>.818606 at a point very
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close t0(0.32, —0.45), which satisfies the rotation index condition (in this case,

= 1). The distance of this point to the starting domain poir.i¥9238. The arc
angle is reduced until the terminating point. Analogously, the step size is shortened
at the point(0.07,0.72) for the bigger simple curve (when the sum of the tangent
vectors and the distance are, respectively3 and0.092).

The final intersection to be analyzed is the following: (Figure 16)

Sy (u,v) @ F(u,v) = (u,v,0" — v + 2 % u?)
Spp(s,w) @ G(s,w) = (s,w, s?).

The intersection is a Devil’s curve consisting of two open and one closed curves in
the parametric domain.

The subdivision scheme was applied to obtain the three starting points on each
of these curvesSy;(1.38,0.50), Sy (—0.34,0.83) and Sy (—1.37,0.82). From the
point.Sy; (—0.34,0.83)=(—0.34, 0.83, 0.01) the central eight-shaped curve is traced.
When the branch poirft;; (0.0, 0.0) is passed at the second time, the rotation index
n. is decremented by 1 as the newly built parametrized loop is negatively oriented
with respect to the loop that contains the starting point. At the ge#t31, 0.87)

the variations of the tangent vectors sum-tp0197, satisfying the rotation index
condition and its distance to the poif3t0.34, 0.83) is 0.048. Hence, the arc angle

is reduced till the terminating point, whose distance to the starting point is almost
0.

Fluv=(u, ¥, ¥4 v 2+2u"2)
g =[5 0, 5

(—0.34,0.83,0.01)

(—0.34,0.83)

Domain of F Domain of G

(-03L,087) N o

0 []
r

(0.0,00) N

=

S ; o \

Figure 16. Intersection df,; andSys.
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6 Concluding Remarks

We presented an expression for computing a rotation index of a piecewise regular
closed plane curve on the basis of its parametrized loops and its branch points with
net multiplicity greater than 2 (Eq. 1). A formal proof that validates this result is
given. An algorithm that implements the expression is developed and integrated
to a marching-based surface—surface intersection procedure for tracing with circu-
lar steps a closed loop without overlapping. Differently from the local differential
properties commonly used in SSI algorithms, the rotation index is a global geo-
metrical property which reflects the behavior of the traced curve. This allows us to
trace it efficiently and reliably.

We point out that the problems may arise in our proposed modified marching algo-
rithm, if the intersection surfaces generate two or more curves that intersect each
other, as shows Figure 17. The curyeself-crosses &P; and crosses the curve

atP,, P3, P, andPs. If the tracing is started fror®,, the branch point®, andP;

will remain in the stack when we go back®y after completing one turn.

Figure 17. Intersections between two curves.

Figure 18.a illustrates the two intersecting simple curves, botR®imnd in the
parametric domain, that are defined implicitly by the regular surfaces

Ss1(u,v) 1 F(u,v) = (u,v,u — u? + vt — v?)
Ssa(s,w) : G(s,w) = (s,w,—0.25).

In the current version of our program, four turns are performed before it stops
appropriately.

To remedy such problems, we propose to overcross th@g@pg in Figure 17 for
ensuring that the parametrized 1069P; P, PyP, closes on the branch poif,,

that is, the last branch generator matches the first branch genera{di(Bf) re-
garding the tracing sense. This extension will be considered in the next version of
our program.
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In general, an algorithm for distinguishing self-intersection points of a regular curve
is not trivial. It involves computation of equations of higher order. Nevertheless,
if a curve is defined as the intersection of two regular surfaces, those points can
be detected by imposing the necessary condition of collinearity of their normal
vectors and, if the curve contains singularities up to fourth contact order without
abrupt change of normal directions, the marching algorithm proposed by Wu and
Andrade [18] deliver reliable results even in the neighborhood of a singular point.

When the singularity of the curve has contact order greater than 4, the marching
scheme with circular steps may fail, as exemplifies Figure 18.b. In this case, the
osculating circles of the two branches that cross at the osdiic@l®.0) have al-

most the same radii. Therefore, when the approximant to the curve in the vicinity
of (0.0, 0.0) is refined with Newton iterations, it converges to the wrong branch and
the wrong result is delivered: two tangential simple curves requiring two starting
points. We believe that we may overcome this problem by classifying the nature
of singular points [6] and the marching algorithm may be benefited from the in-
corporation of this classification, as already remarked by Bajaj et al. [2]. Some
preliminary tests with singular points of typg,, £ < 5, support our idea. As fur-

ther work, we will go deeper into the singularity theory to exploit its potential in
predicting the number and the directions of the bifurcations at each singular point.
Finally, we point out that this may open the possibility to trace curves containing
cusps after slight modifications in Eq. 1.

Fiu, =
5,

{u

P e Ve e ey |

Fiui=(u, v, (0 2ey 2) (14102 - (W2 + 52 + y 22
R é ) ,w,(D yEy ) f yey)

5, W)=(5

Diamain of F Diamain of & Ciomain of F Camain of G

(@) (b)

Figure 18. Open Problems: (a) Intersection with other curves, and (b) Contact order greater
than 4.
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