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Abstract

This paper presents a simple and elegant algorithm to estimate adaptively the

stepping direction and size for tracing a branch of the intersection curve between

two regular surfaces without any nonlinear equation system solver [6,1,7]. The step

is neither along the tangent vector at the current point [16] nor along a parabola in a

vicinity of the current point [19]; it is along a circle at the current point. Although no

curvature analysis or power series expansions about each point of the intersection

curve were used in its construction, we demonstrate that our circle tends to the

exact osculating circle, when the distance between two subsequent sampling points

tends to zero. Through numerical examples, we also show that the performance of

our algorithm by handling singular points, bifurcations, and points on the closely

spaced branches, is equivalent to the ones based on embedding schemes [1,7].

Keywords: Surface intersection, regular surfaces, marching method, osculating

circle, marching step, geometric modeling.

1 Introduction

The determination of the intersection between two surfaces is an important

problem in geometric modeling.
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be two parametric surfaces. Then, their intersection corresponds to the solu-

tion of the non-linear system with 3 equations and 4 variables
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This system can have no solution (if the surfaces do not intersect each other),

only one solution (when the surfaces are tangent at one point) or even in�nite

solutions (that can be isolated points, a curve or overlapped region).

There exists a wide variety of methods for surface-surface intersection com-

putation. In [8] they are classi�ed into six categories: algebraic, subdivision,

continuation, lattice, marching, and hybrid ones. Algebraic methods rely on

the derivation of the equation of the intersection curve by substituting the

parameters of a intersecting surface into the implicit form of the other. Sub-

division techniques consist in decomposing recursively the surfaces to be in-

tersected into simpler ones, which allow direct solution such as plane/plane

intersection [9]. Continuation or homotopy algorithms are based on the idea of

�nding intersection through a system of di�erential equations which \embed"

the equations of intersecting surfaces [1]. Lattice approaches reduce the di-

mensionality of surface intersections by discretizing one or both surfaces [16].

Marching schemes generate a sequence of intersection points by stepping from

a given point in a direction that depends on the local di�erential geometry [4].

Finally, several algorithms combine two or more methods to take advantages

of them [16,11,7].

To our knowledge, there is a consensus that the marching scheme is of great

practical importance for intersection problems. This scheme comprises three

primary phases [12,8]: hunting (start point), tracing, and sorting. The hunting

phase provides starting point for stepping on the intersection curve. It should

locate all branches of the intersection curve and prevent multiple copies of

the same sequence of points during marching phase. Hodographs [18], subdi-

vision techniques [17,14], and algebraic methods [1,7] have been applied for

handling the hunting problem. The marching phase computes sequences of
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points of an intersection curve branch by tracing out from the starting points.

Incorrect step direction or size may lead to erroneous results. Most march-

ing methods make use of curvature analysis or power series expansions about

each point of the intersection curve to control the step. Tracing in the tan-

gent direction [12,17], along a circle [2], and along a parabola [19] are some

solutions presented in the literature and the curvature dependent [15,17,19]

step size is the most used. Di�erential equation system [6,7] and continuation

method [1] are also used to trace out a branch of the intersection curve. The

sorting phase orders the sequences of points into meaningful branches of the

intersection curve. When the points on the intersection curve can be found

sequentially, this sorting is trivial.

In this paper we present yet another algorithm for the marching phase. Our

algorithm has performance comparable to the tracing procedure presented

in [19,1,7] and e�ciency comparable to the methods given in [15,17]. Based

on the same idea presented in [2], the next point is computed using a circle

instead of parabola or tangent vector. We demonstrated that, despite the sim-

plicity in its construction (no second and higher derivatives were employed

for its determination), the proposed circle tends to the osculating circle. Con-

sequently, it works well in the presence of strong changes in the curvature,

closely spaced features, and bifurcations.

Section 2 the proposed circle and its implementation is presented. In Section 3

we show that the constructed circle is a good approximation to the osculating

circle at each point. Next, in Section 4 comparisons with some representative

existing algorithms are given. Finally, some concluding remarks are drawn in

Section 5.

2 A circular step

In this section we present a new stepping algorithm on the basis of the oscu-

lating circle concept [13,10]. The osculating circle at a point P of a curve C is

the best circle that approximates to a curve in a vinicity of P . Then, keeping

on the osculating circle during marching may produce less deviation from the

intersection curve. Consequently, less Newton iterations will be required to

improve the accuracy of reached points at each step and the procedure may

work well even in the presence of bifurcations and closely spaced branches.

However, it is not a trivial task to calculate the exact osculating circle at a

point P on the intersection curve because we do not know its equation a priori.

To overcome this problem without abandoning the idea of osculating circle,

we propose an e�cient algorithm to compute an approximate osculating circle

at each current point with the use of previously traced intersection points. We
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call the marching step on this approximate osculating circle the circular step.

2.1 Construction

Given two neighboring intersection points P and Q, whose tangent vectors are

~u and ~v respectively, an approximate osculating circle at Q is constructed as

follows (Fig 1):

Fig. 1. A circular step

Center (C): the intersection of three planes: the plane that contains Q and

has ~v as normal vector; the plane that contains P and has ~u as normal

vector; and the plane that contains Q and has a normal ~u� ~v.

Radius (R): the distance between C and Q.

Note 1 For non-parallel tangent vectors ~u and ~v, the approximate osculating

circle can always be constructed. If the tangent vectors are parallel, we may

consider that P and Q are on the same segment and the radius of the osculating

circle at Q tends to be in�nity.

Having been determined the approximated osculating circle, the step size on

this circle should be computed. To assure that our marching step adjusts auto-

matically to the changes in the curvature of the intersection curve branch, the

next approximated point to intersection curve A is calculated by incrementing

L radians in central angle

d

QCA, if the circle radius R is less than or equal to

1 length unit (Fig. 1). If R is greater than 1 length unit, then we increment

L=R radians in the central angle. In other words, if the radius R is less than

or equal to 1 length unit, the next point on the circle is chosen by stepping

L � R length units on the arc of circle from Q; if the radius is greater than 1
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length unit, then we trace L length units from Q. In both cases the central

angle

d

QCA, �, is equal to the length of the arc QA divided by the radius R.

2.2 Implementation

Only simple operations, namely product of 3 � 3 matrices and resolution of

3�3 linear system, are su�cient for the implementation of the idea presented

in Section 2.1.

Let P = (p

1

; p

2

; p

3

) and Q = (q

1

; q

2

; q

3

) be two points on the intersection curve

with their respective tangent vectors ~u = (u

1

; u

2

; u

3

) 6=

~

0 and ~v = (v

1

; v

2

; v

3

) 6=

~

0. Let

~

N = (N

1

; N

2

; N

3

) = ~u� ~v. Then, the intersection of planes

{ �

1

: plane that passes through point P and has ~u as normal vector,

{ �

2

: plane that passes through point Q and has ~v as normal vector, and

{ �

3

: plane that passes through point Q and has ~u� ~v as normal vector,

is the center C of the approximate osculating circle at Q. Algebraically, this

statement may be translated into the problem of solving the following linear

system:

8

>

<

>

:

u

1

x+ u

2

y + u

3

z = p

1

u

1

+ p

2

u

2

+ p

3

u

3

v

1

x + v

2

y + v

3

z = q

1

v

1

+ q

2

v

2

+ q

3

v

3

N

1

x +N

2

y +N

3

z = q

1

N

1

+ q

2

N

2

+ q

3

N

3

; (1)

which always has only one solution C if the vectors ~u and ~v are not parallel.

Note 2 If ~u and ~v are parallel, PQ is probably a rectilinear curve (curvature

radius = 1). Therefore, the best choice for step vector is the tangent vector

at Q, ~u or ~v.

Note 3 If Q is a singular point (~v =

~

0), further tracing is not possible. A

new initial point should be determined to trace the rest of the curve.

Knowing C, we can obtain the approximate next point A

(i) Obtain the normal vector n to the circumference plane through the ex-

pression:

~n =

�!

CP �

�!

CQ = (n

1

; n

2

; n

3

):

(ii) Determine the reference system transformation such that after the trans-

formation the osculating circle lies on the plane z = 0 with its center at

O = (0; 0; 0). It consists of a translation

T = [�c

1

�c

2

�c

3

1 ]

T
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followed by a rotation

R =

2

6

4

�

V

0

n

1

V

�n

1

n

2

�V

n

3

�

n

2

�

�n

1

n

3

�V

�n

2

�

n

3

V

3

7

5

;

where � =

q

n

2

2

+ n

2

3

and V =

q

n

2

1

+ n

2

2

+ n

2

3

.

(iii) Obtain

C

0

=CTR

P

0

=PTR

Q

0

=QTR

(iv) Determine the clockwise or counterclockwise orientation of

d

PQ by ob-

serving the sign of the following mix product:

~

k � (

��!

OP

0

�

��!

OQ

0

) = p

0

1

q

0

2

� p

0

2

q

0

1

:

(v) Compute A

0

= (R cos(�); R sin(�); 0), where

� =

8

>

>

>

<

>

>

>

:

� + L; if R � 1 and p

0

1

q

0

2

� p

0

2

q

0

1

> 0

�� L; if R � 1 and p

0

1

q

0

2

� p

0

2

q

0

1

< 0

� + L=R; if R > 1 and p

0

1

q

0

2

� p

0

2

q

0

1

> 0

�� L=R; if R > 1 and p

0

1

q

0

2

� p

0

2

q

0

1

< 0

with � denoting the angle between the vectors

~

i = (1; 0; 0) and the vector

��!

OQ

0

and L, the step angle (Section 2) (Fig 2).

Fig. 2. An e�cient implementation

Note 4 To construct the approximate osculating circle at Q, one prede-

cessor point is necessary. Hence, it is not possible to give a circular step

at the initial point of each branch. In our implementation, we replace this

�rst step by a step L

F

=

L

100

in the tangential direction.
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(vi) Apply the inverse transformations R

�1

and T

�1

to A

0

to obtain the point

A.

Note 5 The computation of T

�1

and R

�1

is trivial, since T

�1

= [ c

1

c

2

c

3

1 ]

T

and R

�1

is equal to the transpose of R, [R]

t

.

Newton iterations are normally performed to improve A, such that a closer

point to the intersection curve is obtained at each marching step [8].

3 Convergence analysis

In this section we show algebraically that our circle, despite having very simple

construction, converges to the exact osculating circle when the step size, L, is

su�ciently small.

Given a parametric curve

f(t) = (f

1

(t); f

2

(t); f

3

(t)):

The center EC(t) of the exact osculating circle to the intersection curve at

point t = a is given by the expression:

EC(a) = f(a) +

 

jf

0

(a)j

3

jf

0

(a)� f

00

(a)j

!

~

N(a)

j

~

N(a)j

; (2)

where

~

N(a) = f

00

(a) �

 

f

0

(a) � f

00

(a)

jf

0

(a)j

2

!

f

0

(a): (3)

The vector

~

N(a) is called the principal normal vector of the intersection curve

at t = a.

The center C = (c

1

; c

2

; c

3

) of the approximated osculating circle, de�ned by the

points Q = f(b+h), P = f(a), and their respective tangent vectors ~u = f

0

(a)

and ~v = f

0

(b+ h), is the solution of the following 3� 3 linear system:

8

>

<

>

:

C � ~u = P � ~u

C � ~v = Q � ~v

C � (~u� ~v) = Q � (~u� ~v)

(4)

Denoting, respectively, as (p

1

; p

2

; p

3

), (q

1

; q

2

; q

3

), (u

1

; u

2

; u

3

), and (v1; v2; v3)

the coordinates of P , the coordinates of Q, the coordinates of ~u, and the

coordinates of ~v, we get with the help of MATHEMATICA [3] the following

solution to eq. (4):
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Note 6 Since c

1

, c

2

and c

3

are continuous functions, there exists a direct

correspondence between the step size L and the increment h. In other words,

we may indistinctly use L and h to refer the limit of the convergence of C (eq.

(4)).

To prove algebraically that our circle converges to the exact osculating circle

when h! 0, we should show that

(i) the plane that contains our circle, whose center is C, tends to coincide

with the plane that contains the exact osculating circle, whose center is
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EC, and

(ii) the center C tends to EC.

Proposition 1 If ~u and ~v are non-parallel, then the plane �

C

that contains

our circle is the plane �

EC

that contains the exact osculating circle at t = a,

when h! 0.

Proof. If h ! 0, then Q ! P . Hence, to demonstrate �

C

! �

EC

, we just

need to show that �

C

tends to be parallel to �

EC

, i.e. ~u and ~v tend to be

perpendicular to (N(a)� ~u).

Expanding ~v � (N(a)� ~u), we obtain

~v � (N(a)� ~u)= f

0

(a) � [f

00

(a)� ((f

0

(a) � f

00

(a))=jf

0

(a)j

2

)f

0

(a)]� f

0

(a� h)

= f

0

(a) � [f

00

(a)� f

0

(a� h)

�((f

0

(a) � f

00

(a))=jf

0

(a)j

2

)f

0

(a)� f

0

(a� h)]

= f

0

(a) � [f

00

(a)� f

0

(a� h)� 0]

= f

0

(a) � [�f

0

(a� h)� f

00

(a)]

=�(f

0

(a)� f

0

(a� h)) � f

00

(a):

Then, applying the properties ~v

1

�~v

1

= 0 and ~v

1

�~v

2

�~v

3

= ~v

1

�~v

2

�~v

3

, we get

lim

h!0

[~v � (

~

N(a)� ~u)] = �(f

0

(a)� f

0

(a)) � f

00

(a) = 0

Analogously,

lim

h!0

[~u�(

~

N(a)�~u)] = lim

h!0

f

0

(a�h)�(

~

N(a)�f

0

(a�h)) = �(f

0

(a)�f

0

(a)):f

00

(a) = 0:

2

Proposition 2 If the intersection curve f(t) lies on the plane z = 0, then C

converges to EC when h! 0.

Proof. In this case eqs. (5), (6) and (7) are reduced, respectively, to

c

1

=

�q

1

� u

2

� v

1

+ p

1

� u

1

� v

2

+ p

2

� u

2

� v

2

� q

2
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2

� v

2

u

1

� v

2

� u

2

� v

1

; (8)

c

2

=

�p

1

� u

1

� v

1

+ q
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� u

1

� v

1
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2

� u

2

� v

1

+ q

2

� u

1

� v

2

u

1

� v

2

� u

2

� v

1

; (9)

c

3

=0: (10)

Replacing p

1

= f

1

(a � h), p

2

= f

2

(a � h), q

1

= f

1

(a), q

2

= f

2

(a),

u

1

= f

0

1

(a � h), u

2

= f

0

2

(a� h), v

1

= f

0

1

(a), and v

2

= f

0

2

(a) in eqs. (8),

(9), and (10), we obtain

9



c

1

=

E1

E3

c

2

=

E2

E3

;

where

E

1

=�f

1

(a)f

0

2

(a� h)f

0

1

(a) + f

1

(a� h)f

0

1

(a� h)f

0

2

(a) +

f

2

(a� h)f

0

2

(a� h)f

0

2

(a)� f

2

(a)f

0

2

(a� h)f

0

2

(a); (11)

E

2

=�f

1

(a� h)f

0

1

(a� h)f

0

1

(a) + f

1

(a)f

0

1

(a� h)f

0

1

(a)�

f

2

(a� h)f

0

2

(a� h)f

0

1

(a) + f

2

(a)f

0

1

(a� h)f

0

2

(a); (12)

E

3

= f

0

1

(a� h)f

0

2

(a)� f

0

2

(a� h)f

0

1

(a): (13)

Adding and subtracting f

0

1

(a)f

0

2

(a) in eq. (13),

E

3

= f

0

1

(a� h)f

0

2

(a) + f

0

1

(a)f

0

2

(a)� f

0

1

(a)f

0

2

(a)� f

0

2

(a� h)f

0

1

(a) =

= f

0

1

(a)(f

0

2

(a)� f

0

2

(a� h))� f

0

2

(a)(f

0

1

(a)� f

0

1

(a� h));

it follows that

lim

h!0

E

3

h

= f

0

1

(a) lim

h!0

f

0

2

(a)� f

0

2

(a� h)

h

� f

0

2

(a) lim

h!0

f

0

1

(a)� f

0

1

(a� h)

h

=

= f

0

1

(a)f

00

2

(a)� f

00

1

(a)f

0

2

(a):

Adding and subtracting the terms f

1

(a)f

0

2

(a)f

0

1

(a�h) and f

1

(a)f

0

1

(a�h)f

0

2

(a�

h) in eq. (11), we obtain

E

1

=�f

1

(a)f

0

2

(a� h)f

0

1

(a) + f

1

(a� h)f

0

1

(a� h)f

0

2

(a) + f

2

(a� h)f

0

2

(a� h)f

0

2

(a)

�f

2

(a)f

0

2

(a� h)f

0

2

(a) + f

1

(a)f

0

2

(a)f

0

1

(a� h)� f

1

(a)f

0

2

(a)f

0

1

(a� h)

+f

1

(a)f

0

1

(a� h)f

0

2

(a� h)� f

1

(a)f

0

1

(a� h)f

0

2

(a� h)

=�f

0

2

(a)f

0

1

(a� h)(f

1

(a)� f

1

(a� h))� f

0

2

(a)f

0

2

(a� h)(f

2

(a)� f

2

(a� h))

�f

1

(a)f

0

2

(a� h)(f

0

1

(a)� f

0

1

(a� h)) + f

1

(a)f

0

1

(a� h)(f

0

2

(a)� f

0

2

(a� h)):

Hence,

lim

h!0

E

1

h

=�f

0

2

(a) lim

h!0

f

0

1

(a� h)(lim

h!0

f

1

(a)� f

1

(a� h)

h

)�

f

0

2

(a) lim

h!0

f

0

2

(a� h) lim

h!0

f

2

(a)� f

2

(a� h)

h

�

f

1

(a)(lim

h!0

f

0

1

(a� h) lim

h!0

f

0

2

(a)� f

0

2

(a� h)

h

+

lim

h!0

f

0

2

(a� h) lim

h!0

f

0

1

(a)� f

0

1

(a� h)

h

) =

=�f

0

2

(a)((f

0

1

(a))

2

+ (f

0

2

(a))

2

) + f

1

(a)(f

0

1

(a)f

00

2

(a)� f

0

2

(a)f

00

1

(a)):

10



Consequently,

lim

h!0

c

1

= lim

h!0

E

1

E

3

=

lim

h!0

E

1

h

lim

h!0

E

3

h

= f

1

(a)�

f

0

2

(a)((f

0

1

(a))

2

+ (f

0

2

(a))

2

)

f

0

1

(a)f

00

2

(a)� f

00

1

(a)f

0

2

(a)

:

Similarly, adding and subtracting the terms f

2

(a)f

0

1

(a)f

0

2

(a�h) and f

2

(a)f

0

1

(a)f

0

2

(a)

in eq.(12),

E

2

= f

0

1

(a� h)f

0

1

(a� h)(f

1

(a)� f

1

(a� h))� f

2

(a)f

0

2

(a)(f

0

1

(a)� f

0

1

(a� h))

+f

0

1

(a)f

0

2

(a� h)(f

2

(a� h)� f

2

(a)) + f

2

(a)f

0

1

(a)(f

0

2

(a� h)� f

0

2

(a));

lim

h!0

E

2

h

= f

0

1

(a)((f

0

1

(a))

2

+ (f

0

2

(a))

2

) + f

2

(a)(f

0

1

(a)f

00

2

(a)� f

0

2

(a)f

00

1

(a));

and

lim

h!0

c

2

= lim

h!0

E

2

E

3

=

lim

h!0

E

2

h

lim

h!0

E

3

h

= f

2

(a) +

f

0

1

(a)((f

0

1

(a))

2

+ (f

0

2

(a))

2

)

f

0

1

(a)f

00

2

(a)� f

00

1

(a)f

0

2

(a)

:

In this way, we show that in the limit the center of our constructed circle is

(f

1

(a)�

f

0

2

(a)((f

0

1

(a))

2

+ (f

0

2

(a))

2

)

f

0

1

(a)f

00

2

(a)� f

00

1

(a)f

0

2

(a)

; f

2

(a) +

f

0

1

(a)((f

0

1

(a))

2

+ (f

0

2

(a))

2

)

f

0

1

(a)f

00

2

(a)� f

00

1

(a)f

0

2

(a)

; 0)

,

which corresponds to the center of the osculating circle of the curve f(t) =

(f

1

(t); f

2

(t); 0) at t = a.

2

Corollary 1 If the intersection curve f(t) is a plane curve, then C converges

to EC when h! 0.

Proof. In this case just a translation T followed by a rotation R, as explained

in Section 2.2, are su�cient for changing the reference system of f(t) such that

f(t) lies on the plane z = 0. Then, from Proposition 2 we have C ! EC.

2

Note 7 By our construction, the transformation (Section 2.2)

11



[RT ] =

2

6

6

6

6

6

6

6

6

4

m

11

m

12

m

13

0

m

21

m

22

m

23

0

m

31

m

32

m

33

0

0 0 0 1

3

7

7

7

7

7

7

7

7

5

2

6

6

6

6

6

6

6

6

4

1 0 0 m

14

0 1 0 m

24

0 0 1 m

34

0 0 0 1

3

7

7

7

7

7

7

7

7

5

=

2

6

6

6

6

6

6

6

6

4

m

11

m

12

m

13

m

11

m

14

+m

12

m

24

+m

13

m

34

m

21

m

22

m

23

m

21

m

24

+m

22

m

24

+m

23

m

34

m

31

m

32

m

33

m

31

m

14

+m

32

m

24

+m

33

m

34

0 0 0 1

3

7

7

7

7

7

7

7

7

5

applied to the intersecting surfaces should be such a one that

H = [RT ]P = (h

1

; h

2

; h

3

)

(m

11

p

1

+m

12

p

2

+m

13

p

3

+ (m

11

m

14

+m

12

m

24

+m

13

m

34

);

m

21

p

1

+m

22

p

2

+m

23

p

3

+ (m

21

m

24

+m

22

m

24

+m

23

m

34

); 0); (14)

K = [RT ]Q = (k

1

; k

2

; k

3

)

(m

11

q

1

+m

12

q

2

+m

13

q

3

+ (m

11

m

14

+m

12

m

24

+m

13

m

34

);

m

21

q

1

+m

22

q

2

+m

23

q

3

+ (m

21

m

24

+m

22

m

24

+m

23

m

34

); 0); (15)

~

U = [R] ~u = (U

1

; U

2

; U

3

)

(m

11

u

1

+m

12

u

2

+m

13

u

3

; m

21

u

1

+m

22

u

2

+m

23

u

3

; 0); (16)

~

V = [R]~v = (V

1

; V

2

; V

3

)

(m

11

v

1

+m

12

v

2

+m

13

v

3

; m

21

v

1

+m

22

v

2

+m

23

v

3

; 0): (17)

Proposition 3 If the intersection curve f(t) is a twisted curve, then C con-

verges to EC when h! 0.

Proof. Applying the transformation [RT ] to the intersecting surfaces and

using the notation introduced in Note 7, eqs. (5), (6), and (7) assume, respec-

tively, the following aspect

c

1

=

�k

1

� U

2

� V

1

+ h

1

� U

1

� V

2

+ h

2

� U

2

� V

2

� k

2

� U

2

� V

2

U

1

� V

2

� U

2

� V

1

; (18)

c

2

=

�h

1

� U

1

� V

1

+ k

1

� U

1

� V

1

� h

2

� U

2

� V

1

+ k

2

� U

1

� V

2

U

1

� V

2

� U

2

� V

1

; (19)

c

3

=0: (20)

To show that C is EC in the limit, it is su�cient to demonstrate that at t = a

lim

h!0

(c

1

; c

2

; c

3

) = flim

h!0

[RT ]gEC(a):

12



By construction, a transformation [RT ] is applied on f(t), such that our circle

at t = a lies on z = 0. From Proposition 1 the plane �

C

that contains our circle

tends to be the plane �

EC

that contains the exact osculating circle at t = a in

the limit. Then, the center of the exact osculating circle of flim

h!0

[RT ]gf(t)

at t = a must have z = 0.

Replacing h

1

= g

1

(a � h), h

2

= g

2

(a � h), k

1

= g

1

(a), k

2

= g

2

(a),

U

1

= g

0

1

(a� h), U

2

= g

0

2

(a� h), V

1

= g

0

1

(a), and V

2

= g

0

2

(a) in eqs. (18)

and (19), we may follow the same idea used for the proof of Proposition 2 and

come to

lim

h!0

c

1

= g

1

(a)�

g

0

2

(a)((g

0

1

(a))

2

+ (g

0

2

(a))

2

)

g

0

1

(a)g

00

2

(a)� g

00

1

(a)g

0

2

(a)

;

lim

h!0

c

2

= g

2

(a) +

g

0

1

(a)((g

0

1

(a))

2

+ (g

0

2

(a))

2

)

g

0

1

(a)g

00

2

(a)� g

00

1

(a)g

0

2

(a)

:

Since [RT ] is an isometry and

g(a) = flim

h!0

[RT ]gf(t) = (g

1

(a); g

2

(a); 0);

we conclude that

(g

1

(a)�

g

0

2

(a)((g

0

1

(a))

2

+ (g

0

2

(a))

2

)

g

0

1

(a)g

00

2

(a)� g

00

1

(a)g

0

2

(a)

; g

2

(a) +

g

0

1

(a)((g

0

1

(a))

2

+ (g

0

2

(a))

2

)

g

0

1

(a)g

00

2

(a)� g

00

1

(a)g

0

2

(a)

; 0)

corresponds to the center of the osculating circle at t = a of flim

h!0

[RT ]gf(t),

also expressed by flim

h!0

[RT ]gEC(a).

2

4 Comparisons

Comparisons with some existing tracing techniques, namely along tangent vec-

tor, parabola, and by using embedding schemes, are presented in this section.

4.1 Tangential step

By tracing an intersection curve with the tangential step, one moves from point

to point by a speci�c step in the direction of tangent vector at each point. This

direction corresponds to the �rst derivative at the point. Although our circle

at each point P was not constructed on the basis of higher derivatives, we

demonstrated in Section 3 that it tends to be an osculating circle at P , which

13



has contact of at least second order. Because the higher are derivatives used

in the computation of the next tracing point, the near lies this point to the

curve [8], we may state that our algorithm need less Newton iterations to

improve its coordinates in relation to the exact intersection curve.

Despite the improvement in accuracy, our algorithm has the same order of

complexity of the one that uses the tangential step. Indeed, it is easy to see

from Section 2.2 that, besides k operations to compute the tangent vector ~v,

we may need less than 100 operations (multiplications and additions) to solve

eq. (1) and geometric transformations to compute the circular step at each

point.

Example 1 For each following pair of surfaces we computed a branch of the

intersection curve by two marching techniques - circular and tangential steps

- with the same length step L. The number of distinct traced points (points

distant each other less than 0.1 length units were considered identical), and

the number of iterations necessary to relax the approximate next point to the

intersection curve are summarized in Table 1.

(i) The pair of surfaces S

1

(Fig. 5)

{ Cylinder: F (u; v) = (v + 4 sin(u); 1:5v; 5 + v + 4 cos(u)); �� � u � � ,

�9 � v � 9.

{ Paraboloid: G(u; v) = (u; v; 9�

u

2

+v

2

5

); �7:5 � u � 7:5, �7:5 � v � 7:5.

(ii) The pair of tore S

2

[1] (Fig. 3)

{ Torus: F (u; v) = ((3 + cos(u)) sin(v); (3 + cos(u)) cos(v); sin(u)), �� �

u; v � �,

{ Torus: G(u; v) = (sin(u); (3 + cos(u)) sin(v); (3 + cos(u)) cos(v)), �� �

u; v � �.

(iii) The pair of surfaces S

3

(Fig. 4)

{ Torus: F (u; v) = ((10� 5 sin(u)) sin(v); 5 cos(u); (10� 5 sin(u)) cos(v)),

0 � u � 2�, 0 � v � 2� .

{ Cylinder: G(u; v) = (v; 5 cos(u); 5 sin(u)); 0 � u � 2�, �20 � v � 20.

Observe that, in comparison with tangential steps, our algorithm always traced

longer curve segments (much more distinct points) and no more than 2 itera-

tions were necessary to improve the coordinates of the traced points.

4.2 Parabolic step

Stoyanov [19] proposed to step along a parabola expressed by

p(s) = f(s

0

) + (s� s

0

)f

0

(s

0

) +

1

2

(s� s

0

)

2

f

00

(s

0

); (21)
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Table 1

Example 1

Surfaces L Method #points 1 it 2 it 3 it

S

1

0.05 Circular 556 73.7% 26.3% 0.0%

Tangent 350 0.3% 99.7% 0.0%

0.20 Circular 377 2.6% 97.4% 0.0%

Tangent 233 0.0% 74.3% 25.7%

S

2

0.05 Circular 431 23.7% 76.3% 0.0%

Tangent 314 0.3% 99.7% 0.0%

0.20 Circular 212 4.2% 95.8% 0.0%

Tangent 106 0.0% 47.2% 52.8%

S

3

0.05 Circular 1259 100.0% 0.0% 0.0%

Tangent 495 8.0% 92.0% 0.0%

0.20 Circular 846 38.5% 61.5% 0.0%

Tangent 240 1.7% 98.3% 0.0%

where f(s) is the intersection curve parameterized by arc length s and s

0

cor-

responds to the contact point of f(s) to p(s). Several linear equation systems

must be solved to estimate the �rst and second partial derivatives, f

0

(s) and

f

00

(s), that appear in eq. (21). Therefore, it involves much more operations

than our algorithm.

Note that eq. (21) is actually the �rst three terms of the Taylor series expansion

at s = s

0

,

f(s) = f(s

0

) + (s� s

0

)f

0

(s

0

) +

1

2

(s� s

0

)

2

f

00

(s

0

) +

1

6

f

000

(s

0

) + � � � :

Therefore, p(s) has contact of second order to f(s) at s = s

0

. And, since

p(s

0

) = f(s

0

), it lies, as the osculating circle, on the osculating plane at

s = s

0

.

It remains to verify how good is the approximation of p(s) to f(s) in the

neighborhood of s = s

0

in comparison with the osculating circle

g(s) = f(s

0

) +

1

�

sin(�(s� s

0

))

~

T (s

0

) +

1

�

(1� cos(�(s� s

0

))

~

N(s

0

); (22)

where

~

T (s

0

) and

~

N(s

0

) correspond, respectively, to the tangent and normal

vector of f(s) at s = s

0

. Recall that we demonstrated in Section 3 that our

constructed circle tends to this circle in the limit.
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Rewriting eq. (21) in terms of

~

T (s

0

) and

~

N(s

0

)

p(s) = f(s

0

) + (s� s

0

)

~

T (s

0

) +

1

2

(s� s

0

)

2

�

~

N(s

0

);

we performed several numerical comparisons, such as the ones presented in

Example 2, and came to the conjecture that g(s) is just slightly closer to f(s)

than p(s) in the neighborhood of s = s

0

. Hence, from our opinion the major

advantage of our algorithm over the algorithm proposed by Stoyanov is its

simplicity.

Example 2 This example illustrates the approximation of g(s) (osculating

circle) and p(s) (parabola) to a given curve �(s) at s

0

+L under the condition

that p(s

0

) = g(s

0

) = �(s

0

).

We computed g(s) and p(s) for four distinct values s

0

of

F (s)=

 

cos(

s

p

2

); sin(

s

p

2

);

s

p

2

!

G(s)=

 

(1 + s)

3=2

3

;

(1� s)

3=2

3

;

s

p

2

!

H(s)=

 

s+

p

s

2

+ 1

2

;

1

2(s+

p

s

2

+ 1)

;

p

2 ln(s+

p

s

2

+ 1)

2

!

:

After then, P

p

= p(s

0

+L), P

g

= g(s

0

+L) and their distances to �(s), d

p

and

d

g

, were calculated (Table 2). We observed that d

g

< d

p

for all tested cases.

4.3 Embedding schemes

In [1] the authors proposed to trace along the tangent direction by using

the embedding scheme [8]. To remedy the \imprecision" of tangential steps,

they show that by monitoring the behavior of a system of nonlinear equations

building up from a set of inequality constraints, abrupt variations on tangent

direction may be reliably detected. The drawback of this procedure is the

complexity.

Replacing the conventional, initial value problem over an unknown parame-

ter interval by a boundary value problem over a �xed, speci�ed interval is a

solution suggested in [7] for determining \unbiasly" a branch of the intersec-

tion curve. More speci�cally, the authors applied spline collocation to a two

point boundary value problem for a di�erential algebraic equation of index

two. This scheme requires that the surfaces must be restricted to ones \for

which a robust capability for determining all solutions to a nonlinear system

of equations".
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Table 2

Exemplo 2

�(s) s

0

L d

p

d

g

F (s) -0,5 0,05 0,000007 0,000005

-0,5 0,10 0,000059 0,000042

0,5 0,05 0,000007 0,000005

0,5 0,10 0,000059 0,000042

G(s) -0,5 0,05 0,000007 0,000006

-0,5 0,10 0,000056 0,000049

0,5 0,05 0,000008 0,000007

0,5 0,10 0,000065 0,000058

H(s) -0,5 0,05 0,000013 0,000012

-0,5 0,10 0,000108 0,000093

0,5 0,05 0,000013 0,000012

0,5 0,10 0,000105 0,000092

Through our exhaustive tests we may claim that our algorithm is so reliable

as the abovementioned solutions, with the advantage that it is much simpler

and covers a larger class of surfaces (any regular surfaces). From an initial

point, it always traces a branch of intersection curve until one of three cases

occurs:

(i) the domain's boundary is reached,

(ii) an initial point is reached (when the next reached point lies in the neigh-

borhood of the initial point. In our implementation, an open disk of radius

2L

3

), or

(iii) singularities of second or higher order.

Let us give some examples.

Fig. 3 depicts the intersection of two tore given in Section 4.1. Observe that

since there are six branches, six initial points (white square marks) were neces-

sary to trace them. In this case, only boundary condition (black square marks)

was activated to stop tracing. It is worth noting that the bifurcation point in

the middle of the both domain spaces, F and G, was crossed over without

problem.

Another example that validates the behavior of our algorithm in the presence

of bifurcation points is the intersection of a torus and a cylinder given in

Section 4.1 (Fig. 4). Again the bifurcation points were crossed over without

any special handling. Observe that the topology of the intersection curve looks

17



Fig. 3. Intersection torus/torus

Fig. 4. Intersection torus/cylinder

distinctly in the parameter spaces.

The intersection of a cylinder and paraboloid given in Section 4.1 (Fig. 5)

also presents distinct topology in the parameter spaces. This example also

illustrates how our algorithm behaves in the presence of turning points. Note

that, despite of two turning points, just two initial points were necessary

to trace out the whole intersection. This is due to the fact that each step

adjusts adaptatively to the curve shape and follows correctly the variation of

curvature. Fig. 6 is another example of a curve with several turning points.

The involved surfaces are

{ F (u; v) = (u; v;

10(u

2

�v

2

)

2+u

4

+v

4

), u 2 [�4; 4], v 2 [�4; 4], and

{ G(u; v) = (

u

v

2

+1

; v;

u�1

2

), u 2 [�4; 5], v 2 [�4; 4].
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Fig. 5. Intersection cylinder/paraboloid

Fig. 6. Intersection of two surfaces with rational parameterization

Our algorithm also handles correctly spatially closed branches, as demon-

strated by the intersection of (Fig. 7)

{ F (u; v) = (u; v; 21=100 � 321=100u

2

� 107=100v

2

+ 81=5u

4

+ 54=5u

2

v

2

+

9=5v

4

� 27u

6

� 27u

4

v

2

� 9u

2

v

4

� v

6

), u; v 2 [�1; 1], and

{ G(r; s) = (r; s; 0), r; s 2 [�1; 1].

In this case, although the minimal distances between the ellipses are 0.03583

(external and middle ones) and 0.03896 (middle and internal ones), the step

length L = 0:05 was used to track each branch without failure. Observe also

that the tracing stopped when it returned to the initial point.

Finally, in order to illustrate the behavior of our algorithm in the neighborhood

of singularities of two non-regular surfaces, we computed the intersection of
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Fig. 7. Intersection plane/surface of degree 6

(Fig. 8) [4]

Fig. 8. Intersections surface of degree 3/surface of degree 4

{ F (u; v) = (u; v; (2u

4

+ v

4

)=10), u 2 [�1:8; 1:8], v 2 [�0:3; 2:3], and

{ G(r; s) = (r; s; (3r

2

s� s

2

+ 2s

3

)=10), r 2 [�1:8; 1:8], s 2 [�0:3; 2:3].

Since F and G present singularity at (0; 0; 0), we provided two initial points

to trace out the two crossed ellipses separately.
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4.4 Asteasu circular step

In [2] a method for computing the next starting point by means of an oscu-

lating circle was presented. It is, however, restricted to the surfaces given in

implicit form. Our method is applicable for parametric surfaces.

5 Concluding Remarks

We have presented an alternative way to trace out a intersection curve branch

from a starting point. According to our experiments, our circular marching

algorithm is e�cient and robust. In the majority of cases the estimated next

point is closer to the intersection curve { normally two Newton iterations are

su�cient to improve its accuracy [5].

The major challenge for making viable marching with circular steps was to de-

termine, with low computational cost, an approximate osculating circle at each

point. After exhaustive tests we are prone to conclude that our approximate

osculating circle is promising in practice. We believe that the combination of

our technique with a robust procedure to determine the initial points, e.g [1,7],

may result in a powerful intersection algorithm.

6 Acknowledgment

The authors are grateful to the reviewers for excellent recommendations. The

�rst author also aknowledge UFPB for their support of his work at Unicamp

performed under PICD/CAPES Program.

References

[1] K. Abdel-Malek and H.J.Yeh. Determining intersection curves between surfaces

of two solids. Computer Aided Design, 28(6/7):539{549, 1996.

[2] C. Asteasu. Intersection of arbitrary surfaces. Computer-Aided Design, 20:533{

538, 1988.

[3] N. Blachman. Matematica: A practical approach. Prentice Hall Inc., New

Jersey, 1992.

[4] C.L.Bajaj, C.M.Ho�mann, J.E.Hopcroft, and R.E.Lynch. Tracing surface

intersections. Computer Aided Geometric Design, 5:285{307, 1988.

21



[5] Lenimar Nunes de Andrade. Tracing along regular surface intersection with

circular steps. PhD thesis, FEEC - Unicamp, Campinas, July 1998. (in

portuguese).

[6] G.A.Kriezis and N.M.Patrikalakis. Rational polynomial surface intersections.

In Gary A.Gariele, editor, Advances in Design Automation - 1991, volume 2,

pages 43{52, Miami, Florida, September 1991.

[7] Thomas A. Grandine and Frederick W. Klein IV. A new approach to the

surface intersection problem. Computer Aided Geometric Design, 14(2):111{

134, February 1997.

[8] Josef Hoschek and Dieter Lasser. Fundamentals of Computer Aided Geometric

Design. A K Peters, Ltd., Wellesly, Massachusetts, USA, 1993. Translation of:

Grundlagen der geometrischen Datenverarbeitung, by Larry L. Schumaker.

[9] Elizabeth G. Houghton, Robert F. Emnett, James D. Factor, and Chaman L.

Sabharwal. Implementation of a divide-and-conquer method for intersection of

parametric surfaces. Computer Aided Geometric Design, 2:173{183, 1985.

[10] H.S.M.Coxeter. Introduction to Geometry. John Wiley & Sons, Inc., 2nd. ed.

edition, 1989.

[11] Pramod Koparkar. Surface intersection by switching from recursive subdivision

to iterative re�nement. The Visual Computer, 8:47{63, 1991.

[12] Michael E. Mortenson. Geometric Modeling. John Wiley & Sons, USA, 1st. ed.

edition, 1985. ISBN 0-471-88279-8.

[13] M.P.Carmo. Di�erential geometry of curves and surfaces. Prentice Hall Inc.,

New Jersey, 1st. ed. edition, 1976.

[14] Gregor M�ullenheim. On determining start points for a surface/surface

intersection algorithm. Computer Aided Geometric Desgin, 8:401{408, 1991.

[15] A. Preusser. Computing area �lling contours for surfases de�ned by piecewise

polynomials. Computer Aided Geometric Desgin, 3:267{279, 1986.

[16] R.E.Barnhill, G. Farin, M. Jordan, and B.R.Piper. Surface/surface intersection.

Computer Aided Geometric Design, 4(1/2):3{16, July 1987.

[17] R.E.Barnhill and S.N.Kersey. A marching method for parametric

surface/surface intersection. Computer Aided Geometric Design, 7(1{4):257{

280, 1990.

[18] Thomas W. Sederberg and R.J.Meyers. Loop detection in surface patch

intersections. Computer Aided Geometric Design, 5:161{171, 1988.

[19] Tz.E.Stoyanov. Marching along surface/surface intersection curves with an

adaptative step length. Computer Aided Geometric Desgin, 9:485{489, 1992.

22


