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Abstract

Aiming at a more realistic cloth animation, our research group has been investigated the theory of
a Cosserat surface since 2005. The motivation for this technical report is to present a comprehensive
treatment of this class of surfaces. The main topic of this report is to detail all the mathematical
properties of the theory of a Cosserat surface presented by Green et al., with help of the material
provided by Fliigge. We introduce the basic elements of Differential Geometry and propose a novel
way to estimate them for samples configured in an arbitrary topology. Along the exposition, we give,
in a conventional notation, complete proofs for the correctness of the expressions that are relevant to
our implementation. We also show how we apply the Cosserat surface to model deformable surfaces.
This results in a set of differential equations, whose solution should be a series of deformable meshes.
Finally, we sketch a numerical method for solving them.
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1 Introduction

Aiming at realistic visual effects and an intuitive interface for cloth simulation, we investigate a novel
formulation for the internal cloth forces. Our model is based on the theory of a Cosserat surface
which considers the Gauss-Weingarten compatibility equations. This ensures that the regularity
of surface is preserved along deformations and, thus, Differently from the works of our knowledge,
unrealistic in-plane oscillations may be avoided without resorting to the intrinsic material damping
terms. Furthermore, our formulation provides direct relations between the fabric statical properties,
namely membrane and bending strains, and easily interpretable geometrical quantities, such as metric
and curvature tensors. The main barrier for the practical applications of the theory of a Cosserat
surface is its numerical complexities on meshes of artibrary topology. The main focus of our research
is to derive from it expressions that are suitable to the known cloth simulation explicit integration
scheme.

This document provides an overview of our on-going project on deformable surface modeling. To
be self-contained, a brief overview of metric and curvature tensors are provided in Section In
Section an algorithm for computing such geometric quantities from a polygonal mesh of arbitrary
mesh is given. Efforts towards to achieving realistic visual fabrics behavior are summarized in Sec-
tion[3l Inspired by the Theory of Cosserat Surface, Melo presented in this Doutorado’s thesis a fabrics
model that can produce out-of-plane movements even when in-plane forces are solely applied [12].
Before we introduce Melo and Wu'’s proposal in Section[6] we give a brief description of the Theory of
Cosserat in Section[dl To validate their proposal, Melo and Wu adopted the semi-implicit integration
schema used by Terzopoulos et al. [I5]. Later, Monteiro analyzed in his Mestrado’s thesis several
numerical explicit integration schema for simulating cloth behaviors and showed that, in comparison
with the semi-implicit schema, explicit schemata are superior both in robustness and performance [13].
Nevertheless, he still used rectilinear grids for spatial discretization; thus, his simulation solutions
are limited to rectangular meshes. This is because that he kept the forward, backward and central
finite difference pattern to compute the differential geometric variables that appear in the model. In
order to extend our simulation domain, we present in Section [5.3] an alternative way to compute each
variable in the model proposed by Melo and Wu.

2 Preliminaries

Although Archimedes of Syracuse and Apollonius of Perga have already some notions of describing the
position of a point in a plane by a sequence of numbers and manipulating it with algebraic tools, only
in the century XVI René Descartes introduced two fixed perpendicular lines and used the distances
to them for specifying the position of a point. The distances and the fixed perpendicular lines are
known as coordinates and coordinate system, respectively. Since then many coordinate systems have
been developed for representing geometric and physical entities. The numbers that describe them
are however not invariant under change of coordinate system. This leads to one question: how these
quantities behave when passing from one coordinate system to another. In this section we present
some basic ideas regarding to this issue.

2.1 Covariance and Contravariance

Knowing that the physical quantities are coordinate system invariant, their components must co-vary
or contra-vary with a change of basis {x1,x2,x3} to compensate the variations. When they must
be contra-varied, we say that they are contravariant vectors. That is, the components must vary in
the opposite “direction” (the inverse transformation) as the change of basis. The components of a
contravariant vector are indicated by a superscript. Examples of contravariant vectors include the
position vector r of a point
2L
r = [ X1 X2 X3 } £C2
.

If we pass to the basis (X1, X2,X3), the vector r itself does not change under this change

T T
[ X1 X2 X3 } 22 | =r= [ X1 X2 X3 } P | (1)
x> 3



instead, the components of the vector make a change that cancels the change in the reference system.
Let’s consider the transformation matrix 7', such that

[il X2 X3 ]:[Xl X2 X3 ]T7

then for satisfying Eq. [, we should have

T T
- -1

72 =T x?
3 x®

This implies that the components (:c17:c271:3) contra-vary (transform inversely) with respect to a

change of the basis (x1, x2,X3).

On the contrary, if the components of a vector should co-vary with a change of basis to maintain
the same meaning, that is, they must vary by the same transformation as the change of basis, it is
said to be covariant vector. The components of this vector are identified by a subscript. Examples
of covariant vectors generally appear when taking a gradient of a function f

Vf:[% % %]:[fl f2 fa]-

If we pass the coordinates (2,2, 2®) to (&',%%, %) via a transformation matrix

that is
' =t E 4 t0d? + s
22 = i@+ boed? + tosd®
3 ~1 .2 -3
x = 131Z +t322” + 337",

the new components of V f may be obtained using the chain rule

Lo Of _0fost opost ofost of, L of, . 0f,
Y793 T 9103t | 02207 | 0% 0% oxt O ox? T o

: _O0f _Oof ox'  Of 02°  Of 02° _ Of af af

= = Voo Tt o oot 2t 52 T 5en'

Lo Of _0fost opost ofost of, o 0f,

ST 97 00107 | 02207 | 0«03 oxl ' da? 7 9pd
Organizing them into matrices it is easy to see that the gradient co-varies (transforms) with a change
of basis:

- - tin tiz tis

Vi=[FfA o Bl=[FH Ffo f]|ta te ts |=[H fo fs]T

ts1  ts2  tss3

How the coordinates of a point vary in an exactly compensating way depends, nevertheless, on
the manner that they are defined. For the same vector v in R#? its coordinates may be taken to be
either the parallel projections or the orthogonal projections of v on the reference axes x; and x2.

Taking the parallel projections, the v may be uniquely defined by a ordered pair (z',z?) in the
form

1
1 2 T
= = . 2
v=zxita'x =] x X2}|:x2:| (2)
The quantities ' and z? are the lengths of the respective parallel projections of v on the vectors

x1 and x2 (Figure [l(a)). We remark that these lengths are measured in units of /X1 -x1 and
/X2 - X2. When we change the basis from (x', x?) to (%!, %?), the vector v should maintain the same

meaning
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Figure 1: Components of a vector: (a) contravariant and (b) covariant components.

The quantities ' and 2 vary in the opposite direction as the change of basis. Thus, they are called
contravariant components of v.
The vector v may also be uniquely described by its orthogonal projections on the vectors x; and
X2, as illustrated in Figure [l (b)
vV = x1X1 + T2Xa2, (3)

such that x1 = v - x; and x2 = v - x2. In matricial notation, we have
[501 ZCQ}:[V'Xl V'Xz]:V-[Xl Xz].
The quantities 1 and x2 are, in fact, the lengths of the respective orthogonal projections of v on the
1

vectors x1 and Xz, which are measured in units of 1 and .
X1X1 X2-X2

When we introduce new reference axes X; and X2, such that
[).h iz]:[X1 Xz]T7

the coordinates ;1 and %2 should be varied by the same transformation 7" to keep the vector v
invariant. This is because that

[ :f?l :f?z ] = V[ )21 )22 ] :V[ X1 X2 }T,
so we have
[:f?l ig]Tﬁl:v[xl Xz]:[:rl :Ez]:>[:f?1 52]:[:171 xz}T.

For this reason, 1 and x2 are called covariant components of the vector v.
The covariant and contravariant components of a vector are related with each other. Before pre-

senting these relations, let’s introduce the concept of reciprocal basis. For every basis (X1,X2, ", Xn, )
there exists a unique reciprocal basis (xl7 x2, .- ,x"), such that
; ; Lifi=j
3 1
X =05 = T o 4
Xj X j { 0,if i # j (4)

That is, each reciprocal basis vector x° is orthogonal to all basis vectors but to one with the same
index 4, and the dot product of the vectors with the same index, x° - x4, is equal to 1 (Figure 2)).
Moreover, the reciprocal basis relative to a given basis exists and is unique.

The component z; of v in the reciprocal basis may be obtained by applying the dot product of
the vector v with a basis vector x;:

VX, = (:C1X1 Frox? 44 TpX") - X = T (5)

Conversely, the orthogonal projection of the vector v on a reciprocal vector x* is the component '
of v in the original basis

v-xi= (:clxl + 2%, + o+ 2"xy) xt =2t (6)

In fact, {x1,X2, ,%,} and {x',x% --- x"} are (mutually) reciprocal.

To construct a reciprocal basis (x!, x?) from a given basis (x1, X2), we observe that we can always
) ) b

write

1 2

X1 = T11X + 12X

1 2

X2 = T21X + T22X
1 11 2

1
= T X1+ T "X

21 22
= X1+ 77X



Figure 2: Basis vectors (in black) and reciprocal basis vectors (in green).

From Eq. @] we have

x! X1 = xllxn + xlzmlz =1
x!. Xy = x11:c21 + x12x22 =0
x2. X = lescn + x22x12 =0
x> ‘X2 = x21x21 + x22x22 =1.

Knowing z11, x12, 21, and 22, we solve the system of linear equations and get

11 x22
€T = B ——
T11X22 — T12X21
12 —I21
"L’ = _— mm mm
T11X22 — T12X21
21 —I21
€T =

T11T22 — T12X21
x

22 = 11 (7)

T11T22 — 12221
Finally, we remark that the formulation of contravariance and covariance is often more natural
in applications, in which there is a coordinate system, whose axes are laid on the tangent plane of a
continuously deforming object and to which the material element of the object is fixed, as we will see
in Section @ This reference system is called convected curvilinear system, i.e. it is convected with
the moving medium for describing its mechanics, and the coordinates of a point are called curvilinear

coordinates or convected coordinates.

2.2 Permutation Symbol

For later reference, we introduce the permutation symbol e;ji. It can be defined as the scalar triple
product of unit vectors in a right-handed coordinate system e;;r = x; - (X; X X)

Til Tz Tis +1, if (i, 4, k) = (1,2,3),(3,1,2) or (2,3,1)
Cijk = Tj1 Tj2 Zj3 = —17 if (’i7j7 k) = (17 37 2)7 (37 27 1) or (27 17 3)
Tkl Tk2 Tk3 0, otherwise

This concept is extensible to arbitraty non-unitary basis (a;, a;, ax), also referred as an e-system

an an as @, i (4, k) = (1,2,3), (3,1,2) or (2,3,1)
€ije = || a1 aj2z ajz || =4 —Va, if (4,5,k) = (1,3,2),(3,2,1) or (2,1,3) ,
ak1  Qk2 Qg3 0, otherwise

where a is the determinant of the square matrix.



2.3 Tensors

We may think of a tensor as a generalization of vectors: a set of quantities that describe a geometrical
object or a physical phenomenon and these quantities transform in a specific way under a change of
coordinate system with respect to which they are defined. For example, a circle may be represented
in rectangular coordinates (z,y) as

2 2 2
r“+y =R
or in polar coordinates u as

r = Rcosu y= Rsinu.

A drastic change in the description of the circle is nothing but a change of coordinates. The quantities
(z,y) and u, may be transformed on each other in accordance with a linear mapping. As explained
in Section 2] the quantitative description of geometric or physical entities may change in the same
or in the opposite direction as the change of basis vectors. If they change in the same direction, the
tensor is said to be contravariant; otherwise it is covariant. A notation of superscript and subscript
is adopted for distinguishing the components of a contravariant tensor from the components of a
covariant one. Upper indices are used to indicate contravariant components, while lower indices
are used to indicate covariant components. There exist, however, quantitative description that is
independent of the coordinate system. It is called invariant. Roughly speaking, the product of a
contravariant vector and a covariant vector always is an invariant.

Often the quantities used to express geometrical objects or physical phenomena are organized
in arrays. The order (or degree) of a tensor is the dimensionality of the array needed to represent
them. A scalar is representable by a number, which is a O-dimensional array, so it is a 0"*-order
tensor. A vector follows the basis transformation rule as shown in Section and is representable by a
1-dimensional array, then it is a 1°%-order tensor. A 2-dimensional array, or square matrix, is needed
to represent a 2"%-order tensor. In general, an order-k tensor can be represented as a k-dimensional
array of components. To avoid a cumbersome representation a tensor is usually stated in terms of its
components. For example, instead of speaking of a n-dimensional vector v = (v1,v2,---,v,) whose
components are v;, we may simply refer to the vector v;. In Section 24 some examples of 2"%-order
tensor are given.

2.4 Metric and Curvature Tensors

In this section we present a summary of some concepts of our interest. It is based on the classical
textbooks of Differential Geometry [43| [9] 4] [29].

We may represent a surface S as a net of parametric curves, such that every point P on the surface
is a crossing point of two of them. Mathematically, we may express S as a function r(u,v) = (z(u,v),
y(u,v), z(u,v)) that maps a point (u,v) in a certain closed interval  onto a three-dimensional space
R3. The real variables u, v are called coordinates on S. When we keep v constant, r(u, Veonstant)
depends on only one parameter u and thus determine a curve on S§. Similarly, when we keep u

constant, r(umnsmnt, v) represents another parametric curve. At P the vector r, = % is tangent to
the curve r(u, veonstant), and r, = % is tangent to the curve r(uconstant,v). If the vectors r, and

r, do not vanish and have different directions, that is n = r,, X r, # 0, at every point, we say that
r(u,v) is a regular surface (Figure [3)).

U v ¢

Figure 3: Parametrization of a surface.



2.4.1 Metric Tensors
Let a(t) = r(u(t),v(t)) be a curve on S that passes through P. The vector at P

r= dr _ ryt + ryv
- dt - u v
is tangent to the curve a(t) and therefore to S, which may be rewritten in a form independent of the

choice of parameter
dr = rydu + rydv. (8)

In fact, all directional vectors d s+ = v at P in a direction d are linear combinations of r, and r, and
thus they lie in the plane spanned by these two vectors. We say that this plane is the tangent plane
at P to S, which has the highest contact with S, and any vector v in it is defined with respect to the
local basis {ry,ry}.

The infinitesimal squared length I(a(t)) of an element of arc of a(t) in the vicinity of P can be
expressed by

B du du du dv du dv dv dv
I(O[(t)) = dOé(t) . dOé(t) = allaa + a125% + a21aa + azzaa
du
_ du  dv ailr  ai2 gt 9
= [ % dt][am ‘mH%}’ (9)
where
11 =Ty Ty Q12 =0A21 =Ty Ty Q22 =Ty - Ty, (10)

The quadratic or the bilinear form, given in Eq.[d is the first fundamental form. Its discriminant
(a11a22 — af2) is always positive. Observe that we have ai12 = a21, because the dot product must
be symmetric at every point. Further, the parametric curves should not be orthogonal. Only if
a12 = a21 = 0, they are orthogonal.

When we introduce new coordinates under an affine coordinate transformation

@ =au(u,v) 0=10(u,v), (11)
we have
ou o
[ru 1 |=]ra ru][% %}—[ra vy | J(u,0) (12)
ou ov

The matrix of all first-order partial derivatives J(u,v) is known as Jacobian matriz of the transfor-
mation from the coordinates (u,v) to (4, ?) and it may be thought as describing the orientation of a
tangent plane to the surface S at a given point.

Conversely,
[ra 15 |=]r rv][ }I[ru r, | J(a,0) (13)

Replacing it in Eq. we get the inverse of the Jacobian matrix

QD|Q:QD|QD
S ale
gezle

J N u,v) = J(@,7) = [

QD|Q3QJ|QJ
SIS
gegle

} (14)

This result is expected, since according to the inverse function theorem, the matrix inverse of the
Jacobian matrix of a function is the Jacobian matrix of the inverse function. In consequence, the
inverse of the Jacobian determinant of a transformation is the Jacobian determinant of the inverse
transformation.

Plugging Eq. into Eq. 8 we have the quantities @11, @12, a1, and azo of the first fundamental
form with respect to @, v

- Oou Ou Oou Ov ov Ou ov Ov
ail = all%% 012%% +a21%% azzﬁg
- ou Ou ou Ov ov Ou ov Ov
a2 = all%%+al2%% +a21%%+a22%%
- Oou Ou ou Ov ov Ou ov Ov
a1 = all%% al2%%+a2l%%+a22%%
- ou Ou ou Ov ov Ou ov Ov
a2 = all%%+al2%% +a21%%+a22%%. (15)



Rearranging Eq.[I5lto matrix form and comparing it with Eq.[I3] we may see that the components
of the first fundamental form vary in the same direction as the change of basis

aiir  Gi2 _ % % ail a2 % %
a21 Q22 5% 59 a2 G22 5% 59
_ ail a2 o
= J(a,2)" [ o :| J(@, ) (16)

Moreover, the components of the first fundamentl form enable us to measure lengths, angles, and
areas in a surface; by them the “metric” in a surface is completely determined. Hence, they are also
called metric coefficients, and because they vary in the same direction as the change of basis they are
organized in 2-dimensional matrix denominated covariant metric tensor (of second order).

One metric question that may arise is how the metric quantities behave with respect to the metric
coefficients under coordinate transformations. How is, for example, the variation of the element arc
under a coordinate transformation? Plugging the contravariant transformation of du and dv in Eq.

du du
= ~ 1
dr(a(t)) - dr(a(t)) = a11dudi + a12dadv + az1dadd + a22dodo,
which leads us to conclude that the first fundamental form is invariant under coordinate transfor-
mations. We remark that the contravariant vector has the same transformation behavior as the
differentials of the coordinates.
Another important metric quantity is the area. Is it invariant with respect to affine coordinate

transformations? The function ||ry X ry||, expressable in terms of the discriminant of the tensor
metric

S| e
glesly

we get

[t X Tl 4 (Tu - o) = [Jeu]|? [fro||?

= |ru x 1o||> = (a11022 — a12a21) = a (18)
1 1

= Ity X vl = (a11022 — @120a21)2 = a?,

provides the area of the parallelogram generated by the vectors r,, and r,. The area of the bounded
region of S defined in € is given by the expression

// Irw ><rv|\dudv://(a11a22—afz)%dudv. (19)
Q Q

Under the change of basis, the expression becomes

//Hm><r5||dﬂd17://(611622—6%2)%dﬂd17
Q Q

B O T PR, 2 LR .
7//0((3ﬂ8f) 8f)3ﬂ)(a11a22 a12)2)((8u8v 8v8u)dUdU)

://(auagg—aig)%dudv.
Q

Observe that the area of S in € continues to hold. This is because that, when carrying out the
transformation, the integrand of Eq. [I9 is multiplied by the determinant of the Jacobian of the
transformation, while ||r, X r,| is multiplied by the absolute value of the determinant of the Jacobian
corresponding to the inverse transformation.

The tangent plane at P on the surface S is equally well spanned by the reciprocal basis vectors r*
and r’ that satisfy the following properties:

" r,=1 r ro=r"r,=0 r’-r,=1 (20)

Figure [ depicts the relationship between the contravariant and covariant basis vectors. In pratic-
ular, we may write each contravariant basis vector as a linear combination of covariant basis vectors

11 12
rY = a 'r,+a’r,

r' = a*r, +a*’r, (21)

10



Figure 4: Contravariant and covariant vectors on the tangent plane.

and take the dot product of the expressions and r,, and r, respectively, to get

11 12 11 12
r“r, = l=a ry Tryu+a°r, ry=a aii~+a “a
11 12 11 12
" r, = 0=a 'ry -Try+a°r, -ry=a a+a-am
21 22 21 22
r’r, = 0=a"r, ry+a“r, ry=a"ai1+a“a
21 22 21 22
r’r, = l=a“r, ry+a“ry, -r,=a" as +a“am. (22)

Solving this linear system we have

11 a2 12 21 ai2 22 ail
a =— a°“=a" = o =— (23)

a a a

where a is defined in Eq. I8
Now taking the dot product of Eq. 2Iland r* or r¥, and applying Eq. 20l we obtain

u u 11 u 12 u 11
r -r = a4 Ty +a'ry,-r =a
v v 21 v 22 v 22
r -r = a4 ry-r +a°r,-r =a
u v 11 v 12 v 12
r -r = a4 ry'r +a’r,-r =a
21 22 21
r'-r* = a“r,-r+a“r, - r*=a (24)

Solving Eq. 21l we also get the following relations

u v
ry = anr -+ air

ry, = a2ir” + agr’ (25)

If we change the coordinates to (@, ), we have after some algebric manipulations

Al o= 11 04 94 a12@@+a21@@+a22@@
Oou Ou Oou Ov ov Ou ov Ov
a2 — a”@@ a12@@ a21@@ QQQ@@
Ou Ou ou Ov ov Ou ov Ov
a2l — 11@@+a12@@+a21@@+a22@@
Ou Ou Oou Ov ov Ou ov Ov
~22 11 00 0V 19 00 OV 21 00 OO 29 OV OV
= a %%'Fa %%'Fa %%-‘r& %% (26)

and we may see that the quantities a'', a'?, a®* and a*? vary in the opposite direction as the change

of basis. We than say that they build a contravariant metric tensor. It is worth remarking that the
covariant metric tensors and the contravariant metric tensors are conjugate, for

a®‘aip + a**azs = 6§ = { (1)7 ii g i g o, B ={1,2}. (27)
2.4.2 Christoffel Symbols

Let (ru,rv,n) be a (local) reference basis at a particular P. If we move in a particular direction d,
this reference changes according to the derivatives dr, and dr, along d. Any changes in a vector
with respect to this local reference basis should, therefore, be “adjusted” with the basis changes for

11



ensuring that the results are consistent in the ambient space. The Christoffel symbols are three-index
quantities that serve to convey these changes.

Expressing the second-order partial derivatives of r as a linear combination of the reference {r.,
r, , n} (with respect to a locally flat coordinates at a particular point P)

&*r -
Judu w
&*r _
oudv Tuv
&*r _
ovou Tou
&*r _
ovdv Tov

= Fhru + F%lrv + biin

= Fhru + F%zrv + bion

= F%lru + Fglrv + bo1n

= T3oru + [Zry + boon, (28)

we may evaluate how the basis vectors r,, and r, change along a curve.
One way to determine the coefficients FQB is to first take the dot product of the first-order
derivative of r and both sides of Eq.

Tyu  Tu = F}lru ‘T +F%1rv ‘T, +biin-ry :F}1a11 +F%1a21
Tyu Ty = F}lru ST, + F%lrv ‘T, +biin-r, = Fham + F%lagg
Tyy Ty = Fizru STy + Ffzrv Ty +bion -1y = Fizall + Ffzagl
Tup Ty = Diory -1y 4 Tlory -1y + bion -1y, = Tisa12 + Dipaze
Tou Ty = D5ty -1y +T51, -1y +boin -1y = Thainn + D3ia2
Tou Ty = Dpry-ry4T5r, -1y +boan-r, = Thai2 + D31a00
Ty Ty = Daoby Ty + D51, 1y + boan - vy = [hyar1 + Doyam
Iy " Ty = F%Qru STy + ngrv Ty +boon -1y, = F%gam + Fggazz (29)

and then multiply the both sides by the coefficients of the contravariant metric tensor (Eq. 24)
and summing them. Using further the fact that the covariant and contravariant metric tensors are
conjugate, we obtain (Eq. 27)

12

11
Tyy * Tu@ + Tyy * To@

12) = ry. - ru

=Tryu - (rua11 +rya

=T1a11a™ + T2 asa"™ + Thaza'® + T'aza'® = Fh(anau + a21a12) =Th

Tuu  Tu@ ' + Tyy - 100 = ruy - (rea® 4+ rea®) =ryy - r*

= F§1a11a21 + Fialzam + F§1a21a22 + F%1a22a22 = Fi(alzam + a22a22) = F%l

Tuv - Tua'' + Ty Toa'” = ryy - (rua'’ +10a?) = ryy - 1"

= F%Zallall + Ffzazlall + F}zazlalz + F%zazzam = F}Z(allall + a21a12) = Fiz

22
)

21 22 21 v
Typ " Tyl +Typ  TyQ = Tyy - (Fy@” +1pa"") =Tyy - T

2 21 2 21 2 22 2 22 2 21 22 2
= F12a11a + F12a12a —+ F12a21a —+ F12a22a = F12(a12a + a22a ) = F12

12 12
)

11 11 u
Tyu * TuQ + Cyy - Tya = TI'yu - (I‘uCL +rya =Iyy I

1 11 2 11 1 12 2 12 1 11 12 1
= F21a11a + F21a21a —+ F21a21a —+ F21a22a = F21(a11a + az21a ) = F21

22 22 v
) = ryul

Loy - rua21 + Cyy - Lp@™" = Ty - (ruazl +rya
= Fgﬂhlam + Fgﬂllzam + F31021&22 + F§1a22a22 = F§1(012a21 + a22a22) = Fgl
Loy Tua'' + Ty - Toa'® =1y - (rua'! +1pa'?) =1y "
=Tjara'’ + a0 + Thrazia'? 4+ yaa'” = F%Z(allall + a21a12) =T5
Ty Tu@” + Tyy - Toa®” =ryy - (tua®! +1,0°%) =10y -1
= F§2a11a21 + F§2a12a21 + F§2a21a22 + F%gazzazz = F%g (a12a21 + a22a22) = Fgg.

(30)
The coefficients T') s are, in fact, the scalar products of the second derivatives onto the contravari-
ant basis vectors. They are called Christoffel symbols (of the second kind) and provide connection

between the local tangent planes, making thus possible the computation of the differences between
two vectors in two nearby points on a surface of arbitrary geometry as explained in Section 2.4.4]

12



If we call the scalar products of the first and the second derivatives of the covariant basis vectors
in Eq. 29 the Christoffel symbols of the first kind and denote them by I'ngx, namely

Fii = ruw-ru
T2 = ruu-ro
I'or = ruw- Ty
T2 = ruv- Ty
Fo11 = ryu-ru
1—‘212 = TIyy Ty
1—‘221 = TIyy Ty
1—‘222 = Tyy Ty, (31)

we have the following relations between the Christoffel symbols of the first kind and of the second
kind

Tupy = a15Tap + a2 Top,  with «a,B € {1,2}. (32)
Conversely, we may derive the Christoffel symbols of the second kind from the Christoffel symbols of
the first kind and the components of the contravariant metric tensor

I, =0a"Taps +a Tage, with B €{1,2}. (33)

Observe that, bacause ry, = ry., the Christofell symbols of the first kind and the second kind are
symmetric with respect to the first two indices, i.e.,

k k
Dije = Ljik Iy =Ty

If we differentiate partially the metric tensors with respect to w and v, we have

dan
= Tuu- Ty + Ty Tyu = 20111
ou
80,12
= Tuu- Ty + Ty Ty =112 +Tong
ou
Oan
= Tyy Ty + Ty Ty = 2021
v
daiz
= Tyy Ty + Ty Tyy = 1_‘122 + 1—‘221
v
80,22
= Tyu- Ty + Ty Tyy = 2212
ou
Oazz
v = Tyy Ty + Ty Tyy = 2F222- (34)

In other words, the first partial derivatives of the components ag of the first fundamental form can
be represented as a sum of two Christoffel symbols of the first kind (Eq. [35)

80,,;,5
=Ta T'sra 35
ou a8+ Lga (35)
Adding and subtracting appropriately these relations, we have
1 oajy, Oaki daij;

( ), (36)

where coord(1) = u and coord(2) = v. It shows that the Christoffel symbols vanish in a coordinate
system if and only if the metric tensor has constant components in that system, such as in the
orthonormal coordinate system.

We may also express the partial derivatives of the contravariant basis vectors as linear combina-
tions of themselves {r*,r", n}

Dok = = : __
k=Y Ocoord(i)  Ocoord(j)  Ocoord(k)

U
or w

= =y = Thr*+4+7Yir’+hin

ou

88% =1r" = Thr'+4 Yhr’+hin

O—r = The' s The 4 hin

o’ . _ T2 p% 4 T2 p 1 B2 37
o0 v T 12T + T2or + hon (37)
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Taking the scalar product of n and both sides of Eq. 37 and knowing that r* -n =r

n-n =1, we obtain

o
ou

o
ov

o
ou
o
ov

8(a11ru + alzru)

ou

allbll + a12b21 = bi = h}

8(a11ru + amrv)

ov

n=(a ruv

11

a11b12 + a12b21 = bé = h%

8(a21ru + azzru)

ou

n=(a" ruu

21

a21b11 + a22b21 = b% = hf

8(a21ru + a22rv)

ov

n=(a"ruv

21

a21b12 + a22b22 = b% = h%

Based on Eq. [22] we derive the equalities

I

el

u
ry,

v
r,
v
ru

v
r,

Py +r*

u.ru_’_ru
u.rv+ru
u.rv_’_ru

u.ru+ru

Ty + 1’
Ty +1°

Ty + 1’

Ty =0=T1 =r""

22
+a rpw)n=a

Tuy =0=T1y =1"

Pou =0= T3 =1"

Ty =0=>TI3, =1"

Tyu =0=T% =1"

Tuw=0=TI%,=1"

Ty =0=T% =1"

Ty =0= T2 =1"

21

v

11 12 11 12
N=(a Tuyu+0 Tyu)N =0 TyuN~+a Ty,N

12 11 12
+a Tyw) =a TyyD+a Tyl

22
Ty + a” " Tyyun

_ u

Tyy = —Ty -
_ u

“Tyuy = — Ty -
_ u

. r'Uu = —ru .
_ u
*Tyy = Ty
_ v

. ruu = —ru .
_ v
*Tyy = — Ty
_ v

. r'U'U, = —ru .
_ v
cTyy = — Ty -

22 21 22
+aryw)n =a" ryyn+ a”‘ryn

Ty

ry

‘T

“ Ty

ry

-n =0 and

(38)

from which the coefficients T2 s may be determined by taking the scalar product of the basis vectors

and Eq. 37

They lead us to the relations

rYr, =-Th
ry T, = _Fél
I‘Z Ty = _F}Z
I‘Z Ty = _F%Z
I‘Z Ty = _Ffl
I‘Z Ty = _Fgl
ry Ty = _F%2
ry Ty = _Fg2
or"
Ou
or"
v
or?
ou
or’
v

Ti,r*-
Tir"-
Tigru .
Tigru
T2,
T2 rv -
Tt -

2 u
Tlgr

1 v
Ty + Taor

2 v
Ty +T211‘

2 v
-y —+ TQQI‘

1 v
Iy —+ T21I‘

1 v
Iy +T21r .

1 v
ry + Taor

2 v
ry, + T35 r

2 v
Iy —+ T22r

~ru—|—h}n-

ru—|—hin-

-ru—i—hén-
~rv—|—h§n-
-ru—i—h?n-
~rv—|—h¥n-
~ru—|—h§n-

~ru—|—h§n-

1 1 1
—Fllru - Fglrv + bll'l

1 1 1
—F12I‘u — FQQI‘U —+ bgn

2 2 2
—Fllru — Ferv —+ bln

2 2 2
—Flgrv - FQQI'U + bgl’l
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Ty = T%l
Ty = T%l
ry = T}Z
ry = T%Z
ry = T?l
ry = Tgl
Ty = T%2
ry, = ng.

(39)



We remark that if we change the coordinates to (@, ) these symbols do not follow the transfor-
According to Eq. 8 we have the following equalities with respect to the

mation law of a tensor.
v) and (@,

coordinates (u,

), respectively:

ruw = Tiry+Thr, +bin
ruy = Diory +ior, +bion
ryu = D51y +T35r, +bon
Tyo = F%zru + F%zrv + baon
raa = Iyra+Thrs +bun
ras = Diora+ [iors + biofi
rss = Dsira+Dairs +boid
rss = 1:‘%21‘11 —+ fgzrg + Bzzfl.

(40)

Differentiating the basis transformation given in Eq.[I2] with respect to the coordinates (u,v), we also

have

ou 00, 0 0%
au 50 5u T T guan
ou N0 9%
+ (I‘f;a% + I‘M%)% + I‘ﬂm
o1 0%, Ot &%
E + I‘M;%)% + I‘am
o1 9%, 0% 0%
e "rl‘ﬂfz%)% "rl‘ﬂm
ol v, 0 9%
Audv

D + I‘M;%)%

ol o, OV 8%
'u% "rl‘ﬂfz%)% "rl‘ﬂm
ou 9v 9u 9*u
a0 T ) g0t geae
ol oy, OV 9%

70 "9 50 T 5000

Tyu (ruu +raoo—F

Tyy = (rﬁﬂ

+rg

Tyy = (rﬁﬂ

rvow = (raa +rg

+ (rsa

We can further equate the terms on the right-hand sides of Eq. 41l and Eq. [40]

Fhru + F%lrv + biin

Fhru + F%zrv + bion

I'5iry + 31y + bain

94 0 = 8% O
(F11I‘u + Fllrv + blln) 8U 8'& + (F12ru + F12r'u + blzn)8 8U
+(F21I‘u + Fer'u + bzln) gu gv + (f22ru + F22r'u + bzzn) gv ZU
L 0uodu =y Oudv ~3 OuOU =~y OV OV U
01 B 9% O 01 8 9% O 8%
M e gw T 25050 T 25050 T 250 g T Gugu) T
2 DUOU o 0UOD | =p DUOD o 000D 0D,
0 5 ge T 5 e T G e T 25 g t uge) ™
-~ Oudu ~ Oudv ~ O0udv ~ OVOV. .
+(b118u8_+b128 u +b21%%+b22%%)n
(1:‘1 @8& ~1 ot 0v ~1 @@ ~1 @@ 82'& )I‘”
Hovou " "Povou ' Towou ' Powdu ' vou’ "
o DUOT  mp OUOD =g OUOD  ~g O0OD O
(T4 = T )rs
Hovou " "Povou ' Hovou ' Powou ' owvou
-~ Oudu ~ O0udv ~ Ouov ~ OVOV. .
+(b118v8_+b128 u +b21%%+b22%%)n
(fl @afb a'LL v 1 @@ 1 @@ + 82ﬂ )I‘—
1 9u dv 128 v P ouov T Poudv | duov’
(1;2 @Bu 5 O 00 5 @@ ~ 5 @@ oa] Jrs
1 ou dv 128 v M ouov T P0udv | Guov’’
NG 0udu  ; 0L n @@H; @@)-
"5ude T2 ouoe T 2 oude T 2ou0
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1 5 21 000U | = DUOD | =y UOT | =y 0000 | 90
Toory +I'5ery +boon = (Fna N +F128’08v+rzlavav+F228’08v+

~o DUOU = DUOD =g OUOD =g ODOD OO

Jvov Jra

g T2 au e T e T a0 50 T guae "
—|—(Z~) 9t 9u i ou 0v 4 ot 0V 4 [o0] av)n
Yavaw T80 e T 00w T 20 a0’ ™
As ry, ry, ri and r; are perpedicular to n, the following expressions should be satisfied
o1 ov ou ov
Filru + F%lrv = Ijn(l‘ua +r5— Ju )+ Ijn(l‘u 90 +rs 811)
1 0t 0u 1 0t 0 L 0008~y 000D 0%

- (FH Ou Ou 12 Ou Ou +I 21 Ou Ou tle ou Ou * é)u@u)r11

s QUOU | g DUID | = DUID =y OV DD 0%

+(F118 9 128_8_+ n5 50 +F22%%+—8uau)rﬁ
ou ov o1 0
Tiory + [for, = F12(ru8 +trogs )+F12(ru8 +rvav)
=1 04 du L 00 =~ OUOD =~ 00OV  O*u

v Ou 128v8u+ 218v8u+ 228v8u+8v8u)ra
o DUOU =g OUOD =g OWOD =9 ODOD 0D

= (Fn

5 e T 20 a0 T 50 50 T 25050 T B0aa)"
ot ov ou 0P
hyr, + 051, = le(l‘u au -|-I‘v8 )+ le( By +rs 85)
1 0uou =1 Ouov oot =1 000D 9%

- (F“auav 12%%—’_ 218u8fu+ 22%%+8u8v)ra

~o OUOU =g OUOD =g OUOD  =o O0OT  O*D

550 T 500 T ™ guae T 2000y t Bue)™
ot ov ou 0P
Dhory +oor, = Fzz(l‘u au +ri— ou )+ Fzz( By +rs 85)
1 0uou =1 Ouov oot~ 000D 9%

- (F“avav 12%%—’_ 218v81)+ 22%%+8v81))ra

(2, 0000 po D00 D00 o 9000 0D
Yovov T Povaw T Povar T Povdau T dudu’ "

Observe that Eq.[I2 has been applied to get formulations most suitable for our purpose: to equate the
coefficients of the basis vectors on the left-hand and on the right-hand sides. Moreover, we recall that
the parameters u and v are independent, as are the parameters @ and ©. We thus find the following
formulae of Christoffel

ot 5 04, Ou -, 00U =y U0 =~ 000G =~ 0D OO0  O*4 Ou

It r = T guov  pr gvou | pr v OU ou
Mg, g5 g ae Y g0 T ™ 0090 T 25,00 T uda’ 92
At du 1 L 0udG =y OUOD =y ODOU -, ODOD  O%u  Ou
Mni——=rI, = (T = Igi—— +T3p—— =
Ugnoa 1 g e " T2 g0 50 " T 5050 T T2 50 50 * 390 53

1 0 o Ou, v p1 0000 | 5y 0400 | w 000U 1 000D, OGOy

3 “%M~:(Mma+waa+ﬂaa+maa+mna
rhin g =Th = <f?%§i i
L 90 prg, D00 5 DLOL g DU g 000 5, 000D, OO
M gs =Th = <f%§“§“ §—§—+f§—§—+F§—§—+§a§—
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The transformation law of the Christoffel symbols of the first kind follows immediately from Eq.
and Eq. For example,

Tz = a21liy + a2eliy = a12T1s + asel3,
= (a @@4—& @@+(~l @@+& @@)Fl +
9w dv 2 9u dv 1 9u ov 29uov 12
+(a @@ a @@ P @@ a @@) 2
"0 du 290 v 190 dv 29 v’ 12
ouwdu _ Oudv _ Ovou . OvOv,,0u

= (011%% +¢112%% +a21%% +a22%%)(%

o OUOU  mp OUOD  mg ODOU =~y 000D %D
Mhgras Y g, Y ioge5, T ™25, 50 F 3ua0) T
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+a 8u811+~ 8u8v+~ 8v8u+~ 81}817)(@
"0 dv R R N I M WA

OO | D00 | 000G gy O30T | O
" ou ov 12 9u v 2L 9y Hv 20udv | Oudv
_ ou  _ 0v
= (a21% + azz%)
2 OUOU =9 OUOUD =9 OV OU 5 00 0D 9%

(F

Thge 50 * g0 5030 * 25050 + gugs) +
+(* @+~ @)
0411a a12av

L 0udu =~y OU OV L 000u -y OO0 0%
Tige 50 *T2g0 0 * M50 30 T 125050 + udy)
o 01 9 i O 0% di

= 5 ((@aaTH + anFu)aua— (a21T% + anFm)a—a— + (anl3 + aulﬂm)8 3, +
.= = 000D . 0% 8%
+(a21I‘§2 + allF%Q)B_E)_ (a1 5ud0 +a 218 Em ) +
ov ot 0 ot 0V 00 Ou
+8U((a22F11 + 012F11)8 EM + (@227 + 012F12)8 N + (@223, + a12r21)8 EM
0v 0 . 0% 9%
+((122F22 + alzrgg)a 8 + ( 8 90 +a 228 90 ))
_ @(f 8u8~+~ ouov ~ 0Ovou P @8’54_( 8%u P 82~))+
T 90 Moudw T P ouow T M ouow T P oudw 18udv " Budv
+Bv(r ouodu =~ Oudv =~ O0vOou =~ @@—F(d 8%u P 8% ))
v Pouov " Poudw  MPouov | Poudv 2 9udv " Budw

From this transformation law we may further derive the second derivatives of the coordinates
(@, ¥) with respect to the coordinates (u,v). Observe that they only depend on the derivatives of first
order and the Christoffel symbols

u L 0U o 00 = 000U = 00OV =y 0UOD =y OV OD
gugn = gy tThgy —Thggn —Teg o —Thgia —Tag o

9% _ 1 00 5 OU =9 OUOU =9 OUOD =9 OUWOU =9 OD OV
guon — hgr TIhgy TUngran T Teguan auan 20

o*n ., 0u 5 O 1 0000 =~ OUOD =1 OUOD 1 00 O

Buoy gy Tlig, - Mgy udv  2udy  2Gudw gy ou dv

*v 4 0 5 O 1 000t =~ QU0 =1 OUOD 1 00 0b

oudv Tagn ou + Flz% FH Ouov F12% o 21 ouov Fzz Ou v

O 4 00 00 DH00 0500 gy 0000 g 0 07

ovou  Pou ! TMov Movou  Povou  Tovou  Povou

8217 o 1 ot 2 ov ~1 ou 0t ~1 ou 0v ~1 ot OV 1 00 0?

goou = Tug, g, ~Thgia —Tag o —Tag on —Tag o

82ﬂ o Fl @ +F2 ot ~1 8@@ ~1 @8’0 fl @81} Fl 00 0U

owdv —  Pou T *o Yovov Povo o0 0 2 9v O

82’5 o 1 v 2 oV ~1 ot 0t ~1 ou 0v ~1 ot 0V 1 0v 0D

Goae — Legy thng, ~Tugias ~Tugig —Tugrs ~Dhp v v

(42)
2.4.3 Curvature Tensors
The unit normal vector of the tangent plane expressed in Eq. Bl is given by
Ty XTy Ty X Ty :I‘uXI‘u. (43)

B ||I‘u X I‘UH B 4/ Q1122 — af2 \/E

The straight line through P in the direction of n is called the normal to the surface & at the
point P. We may, hence, define a local reference consisting r,, r, and n to P, whose lengths are,
respectively, ai1, a2, and 1.

Now, let us compute the variations of the tangent vector at P in a direction «(t)

d’r . 9%r du d*r dv ., du d*u 9%r du 9%r dv dv d?v

= Guondt Tovond @ T @ T Guavdr T avovar @ T @
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take the dot product of n and both sides of the expression

ﬁ.n — (821.@4_821. @)@~n+r dz_u.n

dt Oudu dt ~ Ovdu dt’ dt “d2t
(Ordu L duydy
Oudv dt Ovov dt’ dt Y d%t

PR P
oudu dt dt dvou dt dt
+( 0°r .n)@@+( 0 .n)@@

Oudv dt dt Ovdv dt dt’

(44)

: 8%r 8%r 8%r 8%r
and denote, respectlvely,_ the _terms (3525 '), (7175 'n), (5557 - n) and (555 - n) as b1y, b1z, bz; and
ba2, we reach an expression similar to Eq.

d*r du du du dv du dv dv dv
n = II(d%a(t), = 20 =5, 8B BB, B,
& (d"a(t),n) a CEM G T wE T ww T e
= [& @) bin bz G (45)
- e dt ba1 a2 @

which is called the second fundamental form. The quantity % -n is also known the normal curvature,
which possesses a geometric meaning independent of the choice of the coordinates. It is the curvature
of the normal section of S along the direction dr = a(t) = %% + %%B on the tangent plane.
Since the coordinate differentiations fl—"t‘ and % have a contravariant transformation (Eq. [IT) and
II (dza(t),n) is invariant, the components b11, bi2, b21, and bes form a covariant tensor of second
order called covariant curvature tensor and they are known as curvature coefficients

Differentiating the orthogonality relations r,, - n =0 and r, - n = 0, we have

O’r ‘n+r .8_n_0 - O°r ‘n=-r 8_n
oudu “Cou oudu Y B
Or ~n+r~8—n—0 - O°r -n——r-a—n
oudv Y ou oudv Y du
&*r on &*r on
auau'"+r“'%:0 - auau'n:_r"'%
9%r On 9%r On
avav.n—FrU.%:O - gvov T T e

This leads us to important equalities that relate the orthogonal projections of the derivatives of
n with the coefficients of the second fundamental form

b = _821' n=-r 8_n

T Dudu Y du

b = Or n=-r 8_n

2T Quow Y

b = Or n=-r 8_n

T udu Y B

’r on
b11 = 00 N = —TIy - % (46)

and an alternative geometrical interpretation to the second fundamental form
du du du dv du dv dv dv

II(a(t)7da(t)n)*—dr'da(t)n*bllgg+ 12554’521%%4' ZZEE (47)

The term —dq1)n gives, indeed, the “shape” of S in the vicinity of P along the direction a(t) on
the tangent plane. It is also called the shape operator

S(a(t)) = —da(t)n.

IThe normal section is the curve of intersection of the surface S and a plane that passes through both the tangent dr to
the curve at the point P and the normal to S
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The shape operator of S may be expressed as a linear combination of the basis vectors (ry,ry)

_ on a1 32
Sl g | =] T ] (48)
—S(I‘v) Do _b2 —bg Iy
This follows from the fact that n-n =1 and we have n, -n = 0 and n, -n = 0. And with use of this
operator we may write the second fundamental form as follows

II(a(t),doyn) = S(a(t)).dr. (49)
Taking the dot product of both sides of Eq. 48 and the derivatives of r, we find
on

1 1 1 1
— Ty =—bi1 = —biry-ry —bory-ry = —bjair — byaz:
ou
On 1 1 1 1
— Ty = —bi2 = —=biry - -ry —bory -r, = —bjaiz — baaz2
ou
On 2 2 2 2
— Iy = —ba1 = —=biry-ry —bory-r, = —bjai1 — byaz:
ov
On 2 2 2 2
— Ty = —baa = —biry-r, —bir, -r, = —bjaiz — byazs
ov
and, after solving the linear equation system, we obtain the Weingarten equations
bisajo—bjiass biiaia—bisai;
bl bl 2 2
Ny — Y1 T2 Ty _ aliaz2—aj, allazz—aj, Ty (50)
n - _p2  —p2 r - bagaio—bigazs bigaiz—bazais r
v 1 2 v 2 2 v
ajrazz—aj, aljazz—aj,

Although there is an infinity of curves on S passing through P tangent to the same direction, the
theorem of Meusnier tells us that we may restrict our consideration only to the normal section of &
on that direction, once all of those curves have the same normal curvature. In order to determine
the shape of S in the vicinity of any of its points, we should still investigate the normal curvature
of all the normal sections at P. The direction of the normal curvature always remains that of the
surface normal, but its length may vary for different directions. The directions in which the normal
curvature becomes extreme are called principal directions and the corresponding normal curvatures
are denominated principal curvatures, k1 and k2. These principal directions and curvatures are the
eigenvectors and the eigenvalues of the matrix b2 in Eq.

If in particular the coordinates are chosen so that the coordinate curves are lines of curvature on
the surface S, then the following properties are also satisfied

a2 = b12 = 0 (51)
b11
K1 = —_—
aii
bao
K = = 52
2 = (52)

If a11 and a2z are furthermore unitary the principal curvatures coincide with the curvature coefficients.

2.4.4 Covariant Differentiation

The ordinary derivative of a vector field is defined in terms of the difference between two vectors
at two nearby points. In the Cartesian coordinate system we simply translate one of the vectors
to the origin of the other, keeping it parallel. If the coordinates are chosen so that the coordinates
are curvilinear lines on the surface S, this translation is not well defined because the coordinate
transformation given in Eq.[IIlis not linear. Depending on the closed path along which the vector is
displaced, it may not return as the same vector as depicted in Figure[Bl We must define a rule that
makes the vector displacements unique and, thus, comparable. The covariant differentiation meets
this requirement.

One way to consider the covariant differentiation is that it is a coordinate differentiation of a
vector s taking into acount the change of basis vectors with respect to which it is defined. Let’s show
in this section how this derivative is related to the ordinary one. Consider as a local basis the tangent
vectors (ry,ry). According to Eq.[I3] for passing to the new coordinates @ = 4(u,v) and © = 9(u,v),
the transformation matrix for the basis vectors is J(@,?). Hence, any contravariant components of
the vector

s =s'ry + 571, = (s (u,v), s*(u,v))
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Figure 5: Displacement of a vector (in green) along a closed curvilinear path (in red).

on the tangent plane transforms in opposite direction through J (@, %) (Eq. I3)

2]-1E B

If we take the partial derivative of the vector components with respect to the new coordinates
(u,v), we obtain the relations

S
<

e e
gl

05" 0s'ou  0s'ov.on  ,, 0°% u O°U Qv
2 = uontwodou " (Gusudn  dvouon)
+ (8_328_“ 8_32@)@ 32( 0%a 8_“ 0% @)
Oou 0t Ov Ou’ Ov Oudv 0t Ovdv Ou
8_51 = (8_318_u+8_31@)@+81(82a 8_u+ Pu @)
v Oou 00 Ov 07’ Ou Oudu 0 Ovdu 0
+ (8_328_“+8_81@)@ 32( 0% 8_u+ 0%a @)
ou 00 Ov 09’ dv oudv 0v  Ovdv 0D
052 _ dst du st dv . 9 1, 0% ou % v
95 = ouon  ovonou " Guduon " dvoudn)
+ (8_828_u+8_82@)@+82( 0% 8_u+ 0% @)
Oou 0t Ov Ou’ dv oudv 0 Ovdv O
8_52 = (8_318_“+8_81@)@ s'( 90 8_“+ﬂ@)
v Oou 00 Ov 07V’ Ou Oudu 0 Ovdu O
9s® du st v, IV 5, 0%0 Ou 8% v
T Guas T v e oo " Guow s T dvovav) (53)

and observe that on the right-hand of Eq. 53] we have the second derivatives. This means that the
transformation is not in accordance with the tensor transformation law although a contravariant
vector s is a tensor of first order. How may we rearrange the differentiation process such that the
derivative of a tensor is again a tensor?

Note, however, that using Eq. we may replace the second derivatives that appear in Eq. B3
and obtain

058 _ (9si0u , 0s' v 0u
on ou 0u ov 04’ Ou
1 1 ou 2 ou ~1 ou 01 ~1 ou 0v ~1 ot 0V ~1 00 07, Ou
+ s Mgy +Thgy —Tng a0 —Teg a0 —Ing a0 —Tng 505
1 1 ou 2 ou ~1 ou 01 ~1 ou v ~1 ou 0V ~1 00 0v, Ov
+ s Mg+ Mg g a0 —Teg a0 —Ing a0 —ng o)

8s? du  9s® dv du

+ (Guo T o oa v
2 1 ot 2 ot ~1 ou ou ~1 ot 0V ~1 o 0v ~1 0v 00, Ou
+ S Mg+ Ingr —Thgiar —Teg ar —Tagrar —Tegr o) 5
2 1 ot 2 ot ~1 ou ou ~1 ot 0V ~1 ou 0v ~1 o0v 0D, Ov
+ S Mg+ Tngr —Thgiar —Tegrar —Tagrgr ~Teg 5057
05 os'ou o' on o0
v ou 0V ov 0V’ Ou
1 1 ot 2 ot ~1 ou ou ~1 ot Ov ~1 ou 0v ~1 0v 00, Ou
+ s Mg +Tng, —Tugiar —Teg an —Tagrg, ~Teg 5005
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In consequence of

1 01 0

we may rearrange the terms as follows

ot

~1 0G0

~1 0t 0

~1 00 0V, Ov

) -
s (F”au +F128v Fllav ou 1290 du 2180 du 2 90 Bu)aﬁ
(05 0u 05" 00 00
ou 0V ov 00’ Ov
2y 00y g2 0 5 0000 gy 900 gy 0100 gy 0007 0
2y 250 19y v 129u v 29y v 229y dv’ 9
9,1 OU 5 OU =1 OUOU =1 OUWOD =1 OUWOU =1 OV OV,Ov
s (FQQ%‘FFQQ%_FU%%_F12%%_F21%%_ 22%%)%
25 0u 05! v, 0
Oou Ot ov 0u’ du
00 g2 00 _pa D00 o 0400 0000 g 0005 0u
"9 19 19w ou 129u du 219y du 229y Bu’ 01
1 1 817 2 817 ~1 8&8& ~1 8'& 813 ~1 871817 ~1 817 813 81}
s (F12%+F12%—F11%%—F12%%—F21%%— 22%%)%
(25 0u , 05" v, 06
ou 0u ov 0u’ dv
2 1 817 2 817 ~1 8128& ~1 8'&8’[) ~1 871817 ~1 8178’[) Bu
5(F21%+F21%— 11%%—F12%%— l W 22%%)%
2 1 817 2 817 ~1 8128& ~1 8'&8’[) ~1 871817 ~1 8178'[7 81;
s (FQQ%‘FFQQ%—F11%%—F12%%—F21%%— 22%%)%
(25 0u 05 o0 00
ou 0v ov 09’ Ou
1 1 817 2 817 ~92 8128& ~9 8'& 813 ~92 817,817 ~9 817 813 8'&
ri, &2, 282 209 p2 GUOU g2 9ROV p2 00,00
s +Mng —Thgr g ~ g ™ auae  ™auad) o
1 1 8'[7 2 8'[7 ~1 a'ftaﬂ ~1 8'&8'{) ~1 8718'[7 ~1 8'[78'[7 81}
s Mg+ g —Tngrar —Teg o —Tag 5, ~ g 505
(25 0u 05! 00, 00
ou 0v ov 00’ dv
2 1 v 2 v ~1 ou 01 ~1 ot 0v ~1 ou 0V ~1 00 0U, Ou
STagy g T g ~Tegia ~ M5 ™50 5%
2 1 8'[7 2 8'[7 ~1 aﬂau ~1 8'&81} ~1 8718'[) ~1 8'[78'[7 81}
STagy+Tng —Tugig ~Teg g ™55 ™50 6
didu _ dudv _dvou_ovdw
Sudi ~ Owou OJudv Ovov
didu _ 0udv_0vdu_ovov
Oudv  Owdd Oudur Ovou
~1 _ 18'174 28'&
s 8u+8 ov
~2 _ 187.7 28{)
s = s %-t-s %,
881 11 241 ou 0t 881 11 21 ov 0t
(E +s T +s FZI)%%—'_(W +sTi2+s Fzz)%%
882 12 2.2 ou Ot 882 12 2.2 ov 0t
+(E +sT11+s F21)%% +(%+5 Iz +s Fzz)%%
" ou du 04 2 0u Ou 04 > Ou Ou 1 2 Bu Ou 1
p DB0U00 g 0500 v Di000v  ipy 9000 0w
0y du 04 290 Ou 04 * v Ou 1 290 du O
ep D00U0U gy 0500 0w opy 0G00Du _ apy 0000 Du
" ou v 04 2 0u v i > du B Ou 2 9u Ov O
v dv da 29v dv 04 1 ov v B > 9v dv d4
881 141 2.1 ou 0 881 11 21 ov 0t
(E +s T +s le)%%"‘(% +sTia+s FQQ)%%
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ds? ou Ot s> ov 0t
+(E +s'TH + 521@1)%% + (% +s'TT + 821@2)%%
-1 Ou -1 Ou -, 0D -, OV
—slfil% — 821_‘%1% — SIF%% — SZF%1%
ds! ou 0t ds! ov 0t
= (E +s'T1; + 821@1)%% + (W +s'T1o + 821@2)%%
ds? Oou Ot s> ov 0t
+(E +s'TT + Szrgl)%% + (% +5'TT + 5211%2)@@
—5'Th = 5T
851 881 11 2.1 ou 0 881 11 21 ov 01
o = Gu Te e hgsg, TGy e et s ingg,
ds? Oou Ot s> ov Ou
+(E +s'TH + 521@1)%% + (% +s'TT + Szrgz)%%
—5'Tly — §°Tay
05> ds' oudv ,0s ov 0
25 (% +s'T1; + Szrél)%% + (% +s'T1s + 8211%2)@@
9s? ou 0T 9s? v OV
+(% +s'TT + 821@1)%% + (% +5'T% + 521%2)%%
—5'T'}, — 5°T3,
852 881 11 241 ou 0V 881 11 21 ov 0
% (E +s T +s le)%% +(W +sTa+s FQQ)%%
9s? ou 0 952 ov OV
+(E +s'T% + Szrgl)%% + (% +5'T%, + 521%2)%%

~172 ~212
—S F12 — S8 FQQ

and reach an interesting result: if we sum two linear terms to the ordinary derivatives we get quantities
that vary linearly under coordinate changes

a5t = o= st ou 0t ds! ov 01
% +81F}1+82F51 = (%—i—slfil +82F%1)%%+(W +81F}2+82F%2)%%
s> ou 0t ds? ov 0t
+(E +s'TT + 821@1)%% + (W +s'Th + 521@2)%%
a5t - o= st ou 0 ds! ov 01
% +81F}2+82F52 = (%—i—slfil +82F%1)%%+(W +81F}2+82F%2)%%
s> ou 0 ds? ov 01
+(E +s'TT + 821@1)%% + (W +s'Th + SQng)%%
5% - o= st ou 0V ds! ov 00
% +81F§1+82F31 = (%—i—slfil +82F%1)%%+(W +81F}2+82F%2)%%
s> ou 0V 9s? ov 0
+(E +s'TT + 821@1)%% + (W +s'TT + SQng)%%
052 - o= st ou 0V ds! ov 0P
% +81F§2+82F32 = (%—i—slfil +82F%1)%%+(W +81F}2+82F%2)%%
882 12 242 ou 0V 882 12 242 ov 0P
+(E +sT11+s F21)%% + (W +sT12+s Fzz)%%

(54)

The quantity of an ordinary derivative along a coordinate plus correction terms is the component
of a covariant derivative. Often a notation of stroke is used to indicate it, while an ordinary derivative
is indicated by a comma

_ 851 i o= 5 e o~

S‘1~ = B + Slril + 821%1 = 8,111 + Slrh + 521%1

-1 95" | =z | 2z T E S - L

55 = %—l—sflz-ﬁ-s I =383+8T13+5T%

2 95> 1zp | 2mo 2, Llf2 | 2272

52 = %—l—sfn—&-s I, =8a+5TI1 +5T%

-2 95> zp | 2mo 2 lE2 | 272

5 = Fr + 8T+ 8T =85 +35T1+5T2% (55)
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By means of Eq. [64] and Eq. B3] we get the result that, differently from the ordinary derivatives
(Eq. B3), the covariant derivatives of a contravariant vector are quantified as tensors (Eq. [B5)

sl L Ou0h L 0vdL o Oudi o, OV DL
Sla T Clugahe T enon T B ov | O 9u ou
sl o g 0udi  aOE  ,0udi L, OvOG
S T g aw T Baoe T CBsov T C1Y06 o
2 - g 0wt WO 5 0udb o OvOD
e = Cluggou ' T"oaou ' ouadv | 1Y ou v
2 _ g 0udt 4 0v0 5 0udl  , OvOb
Sl = g ow e aw T 8500 T P asau

The covariant derivative of a contravariant vector is actually a coordinate-dependent adjustment
to ordinary derivative, such that if s is a contravariant basis vector then

§la=84+8TL +8Ty = s/,=0
Sy =385 +3T+8Ty = s,=0
§a=5%+35TH +5T5 = sp,=0
§y=3%+58' T +5T% = s5,=0 (56)

Knowing a geometrical interpretation for the covariant derivative of a contravariant vector, we
may find it by simply taking the orthogonal projections of the ordinary partial derivatives of the
contravariant vector § = §'rz 4+ §%rs on the tangent plane and applying Eq. 211

0s a 8(511‘71 —|—§21‘f,)

~1 ~21
e = G =T-< b
- 8(581—?1) S(rad't +rea’) + (Sarv) (raa'" +rya*")
U
o5 05°
= ( 8871 rg + 511‘7171) (I‘ﬁdll —+ I‘f,dzl) + (a—zrf, + 521‘715) (I‘ﬁ~11 + I‘f,dzl)
_ os' ~11 _21 -1 ~11 _21
= (a~ ri-(rga  +rsa” )+ 8 ras- (rad +rza”))
U
03® ~11 21 2 11 _21
+(%I‘ﬁ-(ra +rs5a”) + §ras - (ra@ 4+ rsd )
935 o e 08% _
= (8* (a11a"" + apa™) + 5'T1,) + (%(ama11 + dg2a”) + 3T51)
= % +5'T1, + 305, = 5111 +5'T1, + 8Ty
. 0s 5 0 .§1I‘ﬂ —|—.§2I‘f, - - B 1 2
5\212 T rf = % : (I‘aa21 + 1‘171122) = 8,2a +5'T3, +5°T5
- 05 4  O(8'rq+ &rs . - - 1 L2
So = gt = A 7 ee) ra? T (g +r0a'?) = 5 + 5Tl + 57T
~ 5 8 =1 =2 - -
@ o= B JWET TN gt e = 8 4 8T + 1 (57)

Analogously we may obtain the components of the covariant derivatives of a covariant vector
¢ = 51r* + 5or’

. 0§ 10} i 5~
Bys = a—Z-m:W%r du1 + 17d15)
8 Sir® T~ D~ 8 Gor? U~ T~
= (‘;15‘_) S(ran +r'ae) + (3821; ) (rfan +ran)
951 4 . or" i~ . 03, or? s 5~
= (%r +818—2)~(r ai +r’ai2) + (8~r +3 zau)~(r a1 +r’ai2)
= (8—8}1'71) (rﬂdu + 1‘5[112) + 5 8r~ (I‘ﬂdu + 1‘735112)
o1 o1
05 o T~ T~ .0 v U~ v~
+(%r ) - (r*ain +ra2) + 52 81;1 - (r*ai +r'ai2) (58)
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Plugging Eq. B6linto it we get

S = % (x"r%an +r'r’an) + S (—r"T — r'T) - (x%au + r'an)
—|—% (%% @i + r'r%ans) + So(—r"TT — r'I3)) - (%G1 + ra)
= % . (dlldu + 621612) + 51(—rﬂr%1 . (I‘~(~111 + I‘ﬂfnz) — rﬁrél . (I‘~(~111 + I‘ﬁdlg))
+% (@2an + a”ai2) + S2(—r"Ti - (an +1r7ais) — T3 - (£an +17a12))
-~ %%—HHF@J%:&J—aﬂr@J% (59)
The same procedure leads us to the following covariant differentiations
S = % rg = % — 51T1p — 52125 = 510 — 5111y — 5213,
Soja = % ‘T = % — 513 — 5203 = S2,1 — 5173, — 5212,
Sap = % ry = % — 51130 — 52030 = S99 — 51055 — 520'3,. (60)

We have also got these equalities if we differentiated the transformation relations between the covari-
ant vectors ¢ and ¢ under the change of basis, as we did in Eq. 53l Moreover, we would have seen
that the covariant derivatives of a covariant vector is a covariant tensor of second order

L PO T2 Y TR T
e = Pvaaan  Monon | Moaoun | M oaou
- Ou du ou v Ov Ou ov Qv
S5 = Sl\u%%+sl\u%%+32\u8ﬂ%+32\u8~%
- Ou du ou v ov du ov Qv
Sola = Sl\u%%_FSI\UE% 2ugs Bn 21v 5% Ba
- ou du ou v Ov du v v
Sal5 = Sl\u%%‘FSl\u%%+32\u%%+52\u%8~

Applying Eq. [60] we may rewrite Eq. 28] in the form

1

ryu — Fllru
1

Tyv — F12I‘u
Fl

Tyy — L1210y

1
Ty — F22 Ty

2
— Fllru = blln
e, =b
— 19Ty = 0121

2
—I'%ry = b2in

2
— FQQI‘U = b22n

I

Tylu = blln
Tylv = bizn
Tylu = ba1n

Tylo = baon.

(61)

The Christoffel symbols of the second kind are defined in terms of the components of the metric
tensor and their derivatives .

Eq.B9and Eq.[B0lshow us that for a covariant vector its covariant derivatives of higher order differ
from its ordinary ones only by subtracting the linear terms of the Christoffel symbols of the second
kind. Extending to the partial derivatives of the covariant tensors of second order, we have [30]

00,
baslu = 50 —015Ta1 —Barlhy — 025101 — BaaTh
00,
Baply = 5> = 015Ths — faiTha — 02T — BaoT . (62)

Denoting the covariant differential of 6,5 for any displacement de = dur, + dvr, by Dl.g, we
have

Dbos = Oapjudu+ 0ap0dv
00,
= 8uﬁ —01pTe1 = 0aaly — 025101 = Oaal 1 )du +
004 1 1 2 2
(=5p ~ 018 a2 = ba1lsz — 02102 — Oa2lss)dv
. 89a5 8‘9045
= Ew du + 90 dv)
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—(015T 81 + 0a1Thy + 025721 + 04215 )du
—(015T 42 + 001 T ho + 025T s + OaoT'30)dv
= dlas — (01501 + 0a1Thy + 025750 + 0a231)du
—(016T 82 + 0a1Tha + 025T %0 + 002T30)dv (63)

B

Similarly, for a contravariant tensor of second order, 7", we have

af 87’aﬁ
lu ou
af 87’aﬁ

8= g AT+ T+ 7T + 0T (64)

+ 77 + Talffl + 72819, + TQ2F§1

T

T

and the following covariant differential
Dre? = T‘(Lﬁdu + T‘?)Bd’l)
8 aB «@ « « «
= (—;U + 718 4+ 7 1Ff1 + 718, + 1 2F§1)du +
Ot | igra | alpB | 26ma | _a2pf
(W + 7 Fll + 7 Fll + 7 FQI + 7 F21)d'l)
or*? TP
= d
( ou Y + v
—l—(TmF% + Talffl + 7219 + Ta2F§1)du
+(7P05, + 7Y+ 72P08) 4 70T ) do
= dr®® 4+ (70 4+ 708, + 70 + 7005 )du
—|—(Tl’BF‘f1 + Talf"fl + 72‘*1“31 + Tazf‘gl)dv, (65)

dv)

For a general tensor of a type (r,s) that is defined in an n-dimensional space, in which the
coordinates of a pont P are denoted by (u',u?,---,u™), its (partial) covariant derivative is defined

to be o
ririr o . ,
grgr_ OTiaeds Jo J1da—1Miat1dr _pm i
Thydslk = Duk + e Tiy s Flﬁlel---la,17nla+1---ls (66)

To conclude this section, it is worth mentioning some basic laws of covariant derivatives [30]

Closure rule: The covariant differentiation of a tensor field of a type (r, s) is a tensor a type(r, s+1);
in particular, the covariant differentiation of a scalar field is its ordinary differential.

Sum rule: The covariant differentiation of the sum of two tensor fields of the same type is the sum
of the covariant differentiations of these fields.

Product rule: The covariant differentiation of the product of any two tensor fields is given in terms
of the covariant differentiations of these fields by a rule which is formally identical with the
product rule of partial/ordinary differentials.

The covariant derivative, indeed, is a way of specifying a derivative along a (unit) tangent vector
v of the surface S. It is namely a directional derivative, or the rate at which a function changes
at a point P in the direction v. Many of the familiar properties of the ordinary derivative hold
for this class of derivatives. These include, for any differentiable functions f and g defined in the
neighborhood of P:

Sum rule: (f +9)jv = flo + 9w,
Constant factor rule: For any constant ¢, (cf), = cf},, and
Product rule: (fg), = gfjo + f9)v-

Finally, we should mention an equality that is useful to this work. If the direction d is expressed
in terms of the basis vectors r, and r, on the tangent plane to S at P, that is d = Ary + pr,, we
have the following directional derivation rule

Daf = Dary+pre f = AMu + pifo.
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2.4.5 Derivatives of Metric and Curvature Tensors

Plugging the elements of the metric tensor in Eq. [62] we obtain from the equalities in Eq. 4] as zero
tensors their covariant derivatives [29]

0aag
aBlu = —Ta1g —T'g1a =0
Aag| u 18 Bl
0aq
aamu = 81)6 - Fagg - F/gza =0. (67)

If we plug the elements of the curvature tensor in Eq.[62 and apply Eq.[33and Eq.[48] we have [22]

Oby
baplu = mﬁ —bigThy — barlhy — bagTay — ba2l3:
Obap 11 21 11 21
= ou big(a Tai1 +a” Ta12) —bai(a T'gi1 +a” Tgiz) —
bog(a'®Ta11 + a**Ta1a) — baz(a'Tg11 4+ a®*Te1a)
o(r, a,5 N
= % —Ca11bh — a1z} — Dpuibl, — Dpiabl
On 1 2 1 2
= Tpawhy N+ Tyayus - By Tweu (rubs +1ub5) —r s, - (ruby + ruby)
on 1 2 1 2
= Tpowhy N+ Tyayws 3y Tweu (rubs +1robs) —rypy, - (ruby + ruby)
on on on
= TiauBy N+T a8 u + oy - ] +r,8, " B
Oby
baplv = &f —biglhs — ba1lha — bagTey — ba2l'3s
Obas 11 21 11 21
= 5y big(a Ta21 +a” Ta22) —bai(a T'ga1 +a” Tgaz) —

bZB(a12Fa21 + a22Fa22) — ba2(a12F621 + a22F522)

O(rpayws -1
= Orwews 1) _ Ta21b — Ca22b — D1l — Dgoob’

ov
on
= Tpowly D+ Tyays - 50 Tyway - (rub}j + rvb%) — T8y (rubi + rvbi)
on
= Tyayby -1 + TopawB * % — Tyay * (I‘ub/lg =+ I‘Ub%) — T8y (I‘ub}l + rvbi)
on on on
= Tyoawhy M+ Tyaus - e + rway - I +ry6y E

where © = w! and v = w?. This leads us to the following equalities

bll\u = Tyyy N+ 3ryy - Ny

bll\'u = b12\u = b21\u = Tyyv N+ Cyy Ny + 20y - Ny

b22\u = b12\'u = b21\'u = Typy N+ Tyy Ny + 20y - Dy

b22\'u = Typo "N+ 3y - Ny (68)

2.4.6 Gaussian and Mean Curvatures

According to the Euler’s theorem, the normal curvature k, for any direction can be given in terms
of the principal curvatures

kn = Kk1c08%0 + Kosin?, (69)

where 0 is the angle between a direction of interest and the principal direction corresponding to k1.
The two theorems, Mousnier’s and Euler’s, give full information concerning the curvature of any
curve through P on the surface S.

The product
biibas — bis

K=K1Kky= —" = 70
2 = ana — (a12)?) (70)
of the two principal normal curvatures is called Gaussian curvature and their arithmetic mean
b2 — 2a12b b
g + K2 11022 a12012 + t1222 11 (71)
2 2(a11a22 — (a12)?)
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is called the mean curvature.
Conversely,

ki = H-+\/H>-K
ks = H++H?>-K. (72)

In some sense, Gaussian curvature measures how far a surface is from being Euclidean plane, since
it relates the small radius € around the point P and their circumference L(C) (Figure [Bla). Another
geometrical interpretation may be derived from the Gauss map N:S — S2, which expresses the unit
normal vector at each point P on the surface S in terms of a vector position of a unit sphere S? € R* .
If the Gaussian curvature at P does not vanish and Gaussian curvature of its connected neighborhood

does not change sign,
/

K = limA%O_y

A

where A is the area in S containig P and A’ is the area of its image in S? (Figure Bla). The third
geometrical interpretation is due to Gauss and O. Bonnet

Theorem 2.1 (Gauss-Bonnet) If Gaussian curvature K of a surface is continuous in a simply
connected region R bounded by a closed curve C composed of k smooth arcs intersecting at exterior

angles B1, B2,B3, -+, Br, then
k
/kgds+// KdAzQﬂ'—Zﬂi
c R i=1

where kg represents the geodesic curvature of the arcs.

P

(a) (b) ()

Figure 6: Geometrical interpretation of Gaussian curvature: (a) distance to Euclidean plane; (b) limit of
the area ratio; (¢) sum of the exterior angles.

While Gaussian curvature is related with the ratio between the coverage of the normal vectors
(the image of the Gauss map) and the area defined by the corresponding points (the domain of the
Gauss map), the mean curvature may be associated to the variation of the area A bounded by a
closed curve C(u(t),v(t)) on S, with respect to the distance h(u(t),v(¢)) on the direction n(u(t), v(t))
(Figure [7)

% = —2/Ch(u(t),v(t))H(u(t),u(t))dt (73)

The sign of the normal curvature is dependent on the orientation of the normal vector n, and thus
on the orientation of the surface S. It is positive if the curve normal vector and the normal vector
of S lie on the same side of the curve ; otherwise it is negative. Therefore, the sign of the mean
curvature H depends on the surface orientation, and therefore on its parametrization.

On the basis of Gaussain and the mean curvatures, we may classify a point of a surface S in

elliptic : if K, H > 0;
hyperbolic : if K, H < 0;
parabolic : if K =0 and H # 0; and
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Figure 7: Geometrical interpretation of the mean curvature.

planar : if K = H = 0.

In addition, we say that a point is umbilical if kK1 = k2.
Eq. and Eq. are not independent. They must satisfy the compatibility conditions

Tyuv = Cuvu Tyvv = Yoyvu Nyy = Ny,

from which we may derive the Mainardi-Codazzi equations

ob ob

—811)1 — 3;2 = buTis +bia(TTy — T11) — boal'T

ob ob

8_;2 _ 8;? = byl + b1a(T3 — T'hy) — boaT'2, (74)

A natural question is whether the converse also holds, that is whether the knowledge of the first
and second fundamental form determines a surface locally. The answer of this question is due to O.
Bonnet.

Theorem 2.2 (Fundamental Theorem) If ai1, ai2, a2 and bi1, b1z, baa are given as functions
of u and v, sufficiently differentiable, which satisfy the Mainardi-Codazzi equations, while ai1a22 —
aly # 0, then there exists a surface which admits as its first and second fundamental forms I =
a1idu® + 2a1adudv + asadv?® and II = byidu® + 2biadudy + b22d1)2, respectively. This surface is
uniquely determined except for its position is space.

2.4.7 Einstein Notation

To simplify the expressions presented in the previous sections, it is convenient to adopt the Einstein
notation or Einstein summation convention, which was introduced by Albert Einstein in 1916 in his
development of the Theory of Relativity.

Contravariant components : Upper indices a® are used to label them.
Covariant components : Lower indices a; are used to label them.
Free Indices: Instead of writing all possible values for an index, the strategy is to define a free index
7 that may take on any particular value
Yi = ;121 + A2T2 + -+ + QinTn = Yi = Qi T
Einstein Summation Convention: Any expression involving a twice-repeated index shall auto-
matically stand for its sum over all of its possible values.

n
Yy =a1T1 + a2x2 + -+ anTn = E Qi =Y = Q%5
i=1

If in particular we choose as the coordinates (u17u2) and adopt Greek indices with the range 1,
2 for denoting the components of metric and curvature tensors, then several representations given
before may be largely simplified. Let us rewrite some formulae from Section 24 in Einstein notation:
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1. Eq.[Q assumes the following aspect

du! dut du! du? dut du? du? du?
Ha(t)) = da(t)-da(t) = an=gr g + @2=gm —g + a0 —g + an =g~
S du® du®
= D awn g )
B=1 a=1
. du® du®
2. Eq. 5 becomes
II(d*a(t) -n)=b du” du’ (76)
A Tde
3. Eq. may be reduced to a streamline
[)s=rap - raa =rap 17 (77)
and the equalities in Eq. BI] (Christoffel symbols of the first kind) compacted in the form
Fag.y =Tap "Iy (78)
4. Eq.[61 Eq.[B39 and Eq. @8 may be compacted to
Tap =101 +bapn = 145 = bapn (79)
rlg = —Tpar’ +b5n = r{3 =bgn (80)
ng = —bgra; (81)

5. The components of the derivative covariant of a contravariant vector s (Eq[EH) takes the form

56 = 55+ 5 Thsi (82)
while the components of the derivative covariant of a covariant vector s (Eq. [B0]) assumes the
form

Salp = Sa.p — 510 (83)
6. The coefficients of Eq. can be expressed as
b =a""bany (84)

2.5 Discrete Differential Geometry

As we are working on surface samples, more precisely on meshes of arbitrary topology, it is necessary
to replace the geometric quantity relations available for its continuous counterpart with equivalent
relations on discrete domain. In this section we show how to estimate from the discrete data sam-
ples the geometric quantities of interest on the basis of ideas presented in [27] [39]. In [3] detailed
comparisons with other approaches are provided.

2.5.1 Normal Vector

A variety of algorithms for estimating vertex normal vectors on a sampled 2D geometry embedded
in R is given in [27]. The eldest one, was proposed by Henri Gouraud [21]. Considering that the
normal vector of each of its adjacent faces contributes equally to the normal vector of a vertex v, one
may simply summing up the normal vectors N; of all n faces incident to v and normalizing the result

_ > iy N
|E?:1 N;|

However, Max showed in [31] that taking the area A; of the face ¢ divided by the squared lengths
of its two edges, e; and €((i+1) mod (n+1))+1, as the weight of the face normal N; accumulated to
the vertex normal n,, produces more accurate estimates (Figure []). For vertices that lie on a
sphere this weighting procedure is exact. Hence, we applied this weighting procedure as [39] in our
implementation

ny

(85)

(86)

v = Nz
LN

i+ €i)(€((i41) mod (n+1))+1 * €((i+1) mod (n+1))+1)
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Figure 8: Normal vector of a vertex as the weighted sum of normal vectors of its adjacent faces.

2.5.2 Coefficients of a Curvature Tensor

Providing approximated normal vector at all vertices, we estimate their variation along each edge
e; = v; — v incident to a vertex v by (Figure H)

An; =n; — n.

3

Figure 9: 1-ring vicinity of a vertex.

Differently from the two-pass procedure proposed by Rusinkiewicz [39], in which per-vertex curva-
ture is obtained from the “Voronoi area” weighted sum of per-face curvatures, we devised a one-pass
algorithm. We consider that each vertex has its own orthonormal coordinate system defined as follows

¢ = v

[vov|
b = nxt (87)
n = n.

Using the triple (¢, b, n) as the coordinates of this reference system with origin at v and considering
that e; is a tangent vector to a curve on the underlying surface, we may assume that

tAt + bAb
tt; + bb; (88)

%

€;

where ¢; and b; can be obtained from the “orthogonal projections” of e; on the reference vectors t
and b, respectively,

ti = e;-t
bi = e; - .b.

Observe that Eq. is indeed a discrete version of Eq. [8l
Moreover, if we discretize Eq. 48] as follows

din ~ —bit—bib
dvn =~ —blt — bab, (89)
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we also have
dn = (=bit — byb)t; + (—bit — b3b)b;. (90)
Once, per construction, the basis vectors t and b are orthogonal and |t| = |b| = a11 = a22 = 1, we
conclude from Eq. B0 that the Weingarten matrix is symmetric, i.e. b2 = b3. In consequence, we may
approximate the coefficients of the second fundamental form with respect to the vectors (e; - t)t and
(e; - b)b as
d(ei.t)tn =t;din =~ (( n) . t)ti = Aniytti ~ —b%t? — b%tibi = bllt? + b1atib;
d(ei-b)bn = bidbn ~ ((1’11 — Il) . b)bl = Al’liybbi ~ —b%biti — bgbf = b1zbiti + bggb?
(( n) - t)b; = Any by ~ —bitb; — bIb7 = bytib; + b1ab?
((n; —m)

. b)ti = Ani,bti =~ —b%t? — b%tibi = blgt? + baotib; (91)

d(ei.t)tn = tldtn ~

d(ei.b)bn = bidbn ~

To make the computation robust under different distributions of triangles around a vertex, the
same average approach for normal vectors (Section [2.5.1)) is applied. We considere that each direc-
tional variation of the mesh normal contributes equally to the curvature tensor of v and sum the
contributions of all n edges e; incident to v

n—1 n—1 n—1

2
E An;t; = bin E t; + bi2 E tib;
n—1 n—1 n—

1
Z An; b = bi2 Z biti + baa Z b?-
i=0 =0

i=0

n—1 n—1 n-1 n—1 n—1
Z An; b + Z An;pt; = bun Z tib; + b12 Z(bf + tzz) + ba2 Z tib;.
i=0 i=0 i=0 i=0 i=0

(92)

We apply the LU decomposition technique to solve the linear set of equations [36]. And, according
to Eq. the solutions b}, b? = b3, and b2 build a matrix of dimension 2. Its eigenvectors and
eigenvalues are, respectively, the estimated principal directions (pd(l) = (pd%wpdfl)) and pdy =
(pdé) , pdfz))) and the estimated principal curvatures ( k1 and k2) of the mesh at v. With the principal
directions we find its ambient coordinates

day = pdiyt+pdinb

and if we pass the basis vectors t and b to d(;y and d(2) we have in new coordinates (Eq. 2]

bia = a2=0 (94)
Bll 7 ~
K1 = — =—b;1= f{lall
ail
522 7 ~
Ky = —— = b= ,‘{QQQQ
a2

Once a'' =a'' =1 (the principal directions are unitary), l~711 = k1 and l~722 = Ka.

As our matrices have dimensions 2x2, we apply the Jacobi method to diagonalize them. Essen-
tially the Jacobi method consists in zeroing the off-diagonal matrix elements by a series of plane
rotations [36].

Nevertheless, it is worth remarking that the estimation accurary is highly dependent on the sam-
pling resolution. When the sampling resolution is not sufficient for correctly capturing the variations
of normal vectors as depicted in Figure [I0] we may get completely wrong values. Once the way that
a mesh is deformed cannot lead to more than one inflection point in our model, we propose to work
around this problem in this work by detecting non-coplanarity in the vicinity of each vertex. Given a
sample vertex P with the normal vector n,. We consider that an adjacent vertex P; with the normal
vector n; is non-coplanar with respect to P, if n, - n; = 1 and fabs(np - (P — P;)) > €. In this case,
we further propose to use the average normal vector N of the normal vectors of the faces that are
adjacent to the edge connecting the sampled adjacent vertices.
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Figure 10: Low sampling resolution.

Another critical issue of our one-pass algorithm is the estimation of the components of the curva-
ture tensor for the vertices on the boundary. This is because that the information on the symmetric
half-side may be missed for inferring the bending behavior of a mesh in the vicinity of these ver-
tices. We propose to round off this lack of information with the two-pass procedure proposed by
Rusinkiewicz, slightly modified for accounting low sampling rate. Essentially, we apply Eq. to
compute the curvature tensors of the sub-divided neighboring faces F; at the midpoint p; of the
adjacent edges of a boundary vertex, as shown in Figure[IT] and transform the quantities to the same
reference system, as explained in Section 2.5.4] before summing them up with the “Voronoi area”
weights. Note that in this way, instead of normal vectors at adjacent vertices n;, we use the average
vectors aux; in the estimation of curvature tensors.

Figure 11: Curvature tensor at a boundary vertex as the “Voronoi area” weighted sum of the curvature
tensors of its adjacent faces.

Any triangle can be circumscribed by a circle whose center Z divides a triangle in three sub-
triangles as show the green dotted lines in Figure [[Il The signed area of each sub-triangle can be
obtained by multiplying the length of the corresponding edge with the height of the sub-triangle.
This height can be computed from the circumradius p and the angle of each vertex. Without loss of
generality, let’s consider the case of the triangle vp1p2 in Figure[I1] in which we have the edge lengths
ea = |p2v|, e1 = |p1p2| and eg = |vp1|, the angles v =a+¢, p1 =b+c, pp=a+band a+b+c= 3.
With use of trigonometric identities

sin(a) = sin(g —p1) = cos(p1)
sin(b) = sin(g — ) = cos(v)
sin(c) = sin(g — p2) = cos(p2)
2., .2 2
~ _ ex+eyg—ep
cos(v) = T oepen
2., .2 2
~ _ €p —+ €1 — €5
cos(p1) = ~ oe0er
2., .2 2
~ _ €71 —+ €y — €p
cos(p2) = e
we can get the signed height of each sub-triangle
ILZ] = psin(a) = peos(i)
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IMZ] = psin(c) = peos(F)
INZ| = psin(b) = pcos(v),

and compute the signed areas of sub-triangles

1 ~ 1 ~ 1 . e3(ed +ef—e3)
Apppwz = 562(P005(P1)) = (50)(62005(171)) = (yﬁ%
1 ~ 1 o~ 1 el +e2—ef
Asmmz = erlpeos(®) = (30)(ercos() = (50 LD
1 ~ 1 ~ 1 . ed(e? +e3—ed)
Asumz = gealpeos(i) = (50)(eacos()) = (30 LLEL=D) (95)
Then, the total area of the triangle is
Arn = Apvpiz +Anpipez + Arpyuz
26%(6(2)4'61 e3) +ei(e3 +ef —el) + ef(el + €3 — ed) (96)
2 2606162

and the area ratios, or the barycentric coordinates («, 3,7) of the circumcenter Z, can be given in
terms of the triangle edge lengths

Ao _ e3(eh+ ¢ = e
An e3(eg +ef —e3) +ef(es +ef —ef) +eglef +e3 —ef)’

B _ AAplng _ 6%(6% + 6(2) — 6%)
An 6(€o+€1—62)+6?(6§+63—6?)+6(6?+6§—63)’

_Anvpiz e(el +e3 —ed)
An e3(ed +ef —e3) +ef(ed +ef —ei) +ef(ef +e5 —ef)’

The sum of the half of the areas of the sub-triangles that are adjacent to each vertex delivers its
Voronoi area with respect to the triangle. For example, for the face Avpip2 the Voronoi area of v is
%AApng + %AAvplZ-

Figure 12: Obtuse tringle.

When the triangle is obtuse, the signed areas may be negative. Without loss of generality, let’s
use Figure[I2]to illustrate two different proposals for the Voronoi areas. Rusinkiewicz considers in his
implementation [38] that the areas of AviLA and AvgBM are, respectively, the (negative) Voronoi
areas relative to the acute angles at vertices v1 and vg

o le, F o
AAvlLA = 379 ( S(Al) sm(v1))
lex & sin(
AnvoBm = —55( s n(vo))- (97)

As the area of Avgvivs is

1 .~ 1 PS
Anvgvivy = 56062 sin(v1) = 56162 sin(vo),
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we can write

~ 2A
sin(v1) = Z80vouvivy
epe2
~ 2A
sin(tp) = S-ovoviva
€162
Replacing them in Eq. @7 we have
1 62 /4& 1 2 /4A
A - _la Aavenvy y_ 12 Advuv,
AviLA 2 2 (eoez cos(v1) 4 of € - €2
16% AAvvv 12AAvv11
A = 8 Ahvouivy y_ 2 2 AAvouivgy
AvoBM 2 2 (6162 cos(vo) 4 i( el -es )

The Voronoi area of the obtuse angle is such one that together with the areas of other sub-triangles
make Up AAvgvgvs

Anvgvive = Aavira + AnrveBrm + Aarv = ABarm = Anvgvive — Anvina — AaveBMm

For avoiding negative weighting, Meyer et al. proposes to simply sub-divide the triangle by
connecting the midpoints of the edges, as the blue dotted lines in Figure [32]. The Voronoi areas

Apn An i
are 212 and ©g7122 for the acute and the obtuse angles, respectively.

2.5.3 Coefficients of a Metric Tensor

Knowing that the components of the metric tensor in any basis of vectors, or frame, are given by the
dot products of these vectors [I0, we may choose any pair of non-normalized, non-collinear estimated
tangent vectors and use them to compute the components of a metric tensor.

We propose to estimate a pair of tangent vectors for each vertex v employing the estimated
principal directions d(;y and d(2) (Eq.[B3). Observe that their cross product gives us the normal
new_n of the estimated tangent plane at v. We decompose all the edges e; = v; — v adjacent to v
(Figure[@) in two components: one parallel to the normal new_n and one orthogonal to n,. This is
obtained by subtracting the projection of e; on new_n from itself

te; = e; — (e; - new_n)new_n. (98)

Among te; we select the vector with maximum length and use it to define
te;
new_t = |e;|—.
|te]

Next, we determine among te;,j # ¢, the one that has the smallest non-null dot product with
new_t. We use the notation new_b to represent this vector, as shown in Figure[I3l Observe that the
vectors (new_t, new_b, new_n) build a reference system and this reference system has the advantage
of approximately embedding the distances between adjacent surface samples in their basis vectors
because the components of the metric tensors are

a11 = new_t - new_t a22 = new_b - new_b a12 = new_t - new_b.

Figure 13: Principal directions (in red) and estimated basis vectors with respect to the adjacent edges
(in green).

35



2.5.4 Coordinate Transformations

In our application it is desirable to express the curvature tensor in the same reference system as the
metric tensor, namely the one presented in Section [2.5.3] Since curvature tensors are transformed

under covariant transformation, we may apply Eq. to transform curvature tensors from the basis
d xd
1) (2)

formed by the principal directions in ambient coordinates (d(1)d (s, ngp), where ng, = a0, %)

into the frame (new_t, new_b, new_n)

bigsajp—bijasg biiaio—bioais

|: %1 0 :| N |: —b% —bi :| - allaggfa%2 a11a227G%2 N |: _bll _b12 :|

Ko _b% _b% bosaia—bizazs  bizaiz—basais —biy  —basy
ajjagz—aj, ajjazz—aj,

If ngp and n are equal, (d(1),d(2)) and (new_t, new_b) are coplanar. We may adopt the following
discrete version of the variation rates of the coordinates dp' and dp? with regard to the coordinates
t and b to find the curvature tensors in terms of (new_t,new_b, n)

Adgy da, - newt

Anew _t

_Adw — d/ -new.b

Anew_b W -

Bde g newt

Anew _t

——— = dy- _b.

Anow b (2) - NEW (99)

When (d(y,d(2)) and (t,b) are not coplanar, Rusinkiewicz observed in [39] that one cannot
simply project the axes. He proposed to rotate the normal vector ng, such that it aligns with n
before applying Eq. Let’s take a look at his proposal.

erp_old_~
perp_old |

P e old_norm
&

t

new_norm /

7> new_v

old_v

Figure 14: Rotation of an old reference system (in black) towards a new reference (in red), such that the
normal vectors become collinear.

Given an old reference system (old., old,, old,orm) and a new reference system (new,, new,, newnorm).
When old,orm is rotated towards to new,orm such that they become collinear as illustrates Figure[I4]
new,.rm can be described as the combination of two orthogonal vectors

NeWnorm = perp,,; + cos(d)new,orm

= Perpgq + (Oldnorm . newnorm)‘)ldnorm«

Since |perp,;,| = sin(f) = /1 — ndot?, where ndot = cos() = oldnorm - N€Wrorm, PErp,;,; can
be normalized by simply dividing it with /1 — ndot?. Rusinkiewicz observed that if he decomposed
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old, /old, into two orthogonal vectors, one in the direction of the normal vector of the plane P con-

taining oldnorm and N€W,orm, drawn in blue in Figure [[4] and another in the direction of 7"“""”2 ,
V/ 1—ndot

drawn in green in Figure[I4] only the components on P are rotated by the same angle 6 that old,orm

was rotated. To get these components, he projected old, on % and got the length of each
—ndot

vector-component
Perp,iq

Projp(old,)| = old, -
|Projp(oldu)| g

After rotated by the angle 6, this vector on P became

(old., - P Potd ) cos(0) P Poia (old, - M) sin(60)oldnorm

V1 — ndot? V1 — ndot? V1 — ndot?

which is equivalent to

Perpgq Perp,q Perp,;q /
old, - ndot — (old, - —=22— 1 — ndot2o0ldorm 100
( V1 — ndot? ) V1 — ndot? ( V1 — ndot? ) (100)

The new vector new,, can then be obtained by subtracting the vector (old, -

and adding Eq. [I00 as follows

Perboid ) Perbyigd

\/17ndot2 \/lfndot2

Perp,q Perp,q
V1 —ndot?” /1 — ndot?
Perp,q Perp,q Perp,q
+((oldy, - ndot — (old, - ——2%_)\/1 — ndot?old,.orm
(( V1 = ndot? ) V1 — ndot? ( V1 — ndot? ) )
Perp,q Perp,q
= old, — ((old. - —
(( V1 —ndotz)\/l — ndot?

—(old,, - —2ZEPold ) jop PEPold 4 (g1q,, . LEPold )\ /1 d0t201dngrm)

new, = old, — (oldy -

V1 — ndot? V1 — ndot? V1 — ndot?
1 — ndot
= old, — (oldy - Perpozd)(mperpozd + oldnorm)
= old, — (old, - perpold)ﬁ(newnmm — ndot oldporm + (1 4+ ndot) oldnorm)
= old, — (Oldu : perpold)m(newnomn + Oldnorm)« (101)

The new vector new,, can be analogously derived

new, = old, — (old, - perp,;;) (newnorm + 0ldnorm). (102)

_ 1
1 + ndot

We devised an alternative procedure that extracts the derivatives of the coordinates dp* and dp?
with respect to the coordinates ¢ and b from the Jacobian matrix J(new_t, new_b, new_n)

<9dp1 <9dp1 del

ot, ob,  on,
J(new_t,new_b,newn) = | 24~ 2dp”  ddp
at b on

adp®  adp®  9dp®
ot ob on

This matrix transforms the basis vector B = (d@y,d(2),; nap) to B = (new_t, new_b,new_n)

B = BJ(new-t,new.b,newn) = J(new_t,new-b,new_n) =

B'B= [ dyy d ng }71 [ new_t new.b new.n } (103)

For quantities that transform contravariantly, as in Eq. D@ we should take the Jacobian matrix
of the inverse function from B = (new_t,new_b,new_n) to B = (d(1),d(2), ngp), namely

B = BJ(d1,da2,nap) = J(d1,da,nap) =
B 'B=[B Y)Y YB]"'=[B 'B]"" = [J(new_t,new_b,new_n)] ", (104)

which is expected from the inverse function theorem.

37



2.5.5 Christoffel Symbols

In this work we need Christoffel symbols for compensating the basis changes when we evaluate the
difference between two quantities given in their own local reference system, as shown in Section 2441
In Section we present several equivalent formulations to express them. Because of the number
of required terms, we propose in this work to take the discrete form of Eq. [[7] for estimating these
geometric quantities at each sample of a surface mesh of arbitrary topology.

Our starting point are the local reference systems estimated with use of the procedure described
in Section 253 Figure [[Hlillustrates the local reference systems in the adjacency of a surface sample
P(t,b). They are ri(t + At,b) and ry(t + At,b) at the sample P(t + At,b), and ri(t,b + Ab) and
ry(t,b + Ab) at the sample P(¢,b+ Ab). Observe that these first derivatives are given with respect
to the ambient space and we may apply a classical finite differencing scheme for estimating partial
second derivatives on discrete data: the forward, the backward or the central difference scheme.

P(t,b+ Ab)

Figure 15: Adjacent local reference systems.

For example, if we consider that our parametrization is by arc length, the second derivatives of r;
with respect to t in the forward difference scheme is

I‘t(t + At7 b) — I‘t(t7 b) ~ I‘t(t + At7 b) — I‘t(t7 b)

= ~ 1
Tt At P(t+ ALb) — P(L,b) (105)
the backward difference scheme has the form
I‘t(t7 b) — It (t — At7 b) It (t7 b) — I‘t(t — At7 b)
= ~ 1
et At P(L,b) — P(t— ALD) (106)
and the central difference scheme considers both adjacent samples
£y A ri(t + At b) —re(t — AL L) re(t 4 At b) — 1 (t — ALD) (107)

At T P(t+ At,b) — P(t — At,b)

Since all finite differencing schemes are based on a Taylor expansion of the function to be differen-
tiated and they only vary on the terms that are truncated, our choice is based on the approximation
error. It is known that the approximation error for central differences is of higher order compared
with forward or backward differences [36] and that the central scheme is the most common approach
for derivative estimation in Computer Graphics. It is thus better to apply the central difference
scheme whenever it is possible and to compute the Christoffel symbols of the second kind as the
scalar products of the first derivatives of the basis vectors and the contravariant basis vectors.

1 t 1 1 t 1 t
'y =ru-r FMo=Ta=ru-r [y =11
2 b 2 2 b 2 b
I'iy=ryu-r I'o=I% =rp-r IT5% =rp-r (108)

where the contravariant basis vectors can be determined with use of Eq. 2Tl and the necessary com-
ponents of the contravariant metric tensor can be get from inverting the covariant metric tensor

-1
a' a2 [an an
e a2 | T | am am
Alternatively, we use a differencing scheme of Eq.[33land Eq.[36]to estimate the Christoffel symbols

2
I, = a"Tapi+a*Taps
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— @ dagi dara aaaﬁ) +a?( Oapa Oaza 5aa5))
coord(a coor u coord(a coor v
Ocoord Ocoord(B 0 Ocoord Ocoord(B 0
_ (alﬁ, Aagi Aaia B Aaag) i azw( Aags Aasq _ Aaap )
Acoord(a))  Acoord(p) Au Acoord(a)  Acoord(p) Av

(109)

where coord(1l) = u and coord(2) = v

2.5.6 Derivatives of Curvature Tensor

Particularly for the derivatives of curvature tensors, we have the expressions given in Eq. Gravesen
and Ungstrup showed us that only four among eight coefficients are distinct [22]. Rusinkiewicz further
observed that a simple extension to the curvature-estimation algorithm can be used to estimate
“derivatives of curvature”: just as curvatures are estimated per-vertex by considering the differences
in normals along the edges, we may use the differences in the normal curvature along the edges e;
adjacent to each vertex v [39]. His procedure has the advantage that considers all known variations
around v.

Defining an orthonormal reference system (t, b, n) as in Section[2Z.5.2lat each vertex, the directional
derivatives of the coefficients of the curvature tensor along the projections of an edge e; on the
tangential plane can be approximated as follows

die,-tytb11 = tidbi1 & tiAbiy & ti(bi1)eti + bi1pbi)
bidb11 ~ bjAbi1 = bi(by1)ets + bi1)pbi)
tidbi2 = t;Abi2 = ti(brajets + biopbi)
bidb12 ~ bjAbiz = bi(b12)eti + biosbi)
tidba1 = t;Aba1 = ti(bo1jets + bon|pbi)
bidba1 ~ b;Abz1 = bi(ba1jeti + boy)pbi)
d(e; t)tb22 tidbaa & t;Abga & ti(bag)iti + bagpbi)
die; bypb2a = bidbaa = biAbay & bi(bag|iti + bagjpbi). (110)

d(e; b)bb11

de; t)tb12

d(e; b)bb12

de; t)tb21

d(e; b)bb21

As we have four unknowns, we compact these expressions into a system of 4 linear equations

tiAbin & tibyyye + tibibiay = tibinye + tibibiag

biAbi1 + 1;Ab1a + tiAbar = b;Abix + 2t;Abio bi(brajeti + bi1jpbi) + ti(baxjeti 4 bar)pbi) 4 ti(brojets + bizpbi)
= bitibiye + b?b12\t + t?bm\t + tibibiop + t?bm\t + bitibiapp

bitibirje + (2] + b7 )biaje + 2tibibia
bi(bygjeti 4+ bi2jpbi) 4 bi(ba1jeti + baypbi) + ti(bazpeti + bozjpbs)
= Dbitibio + b?b12\b + bitibig)e + b?blz\b + t?bm\b + bitibaap
= 2bitibiaye + (£ + 267 )b1ajp + bitibaoys
bitiboajs + b:boayy

R

tiAbao + biAbia + biAba1 = t;Abas + 2b; Abi2

%

bi Abao

%

Similarly to the estimation of curvature tensors, Rusinkiewicz proposed the following summations
for attenuating possible unwanted biases

n—1 n—1 n—1
ZAbll,iti ~ bll\tzt? + bioj Ztibi
i=0 i=0 i=0
n—1 n—1 n—1 n—1 n—1
ZAbll,ibi +2ZAb12,iti ~~ bll\tztibi +b12‘t 2(225? —‘y—b?) —‘y—blg‘b Z(2tibi)
i=0 i=0 i=0 i=0 i=0
n—1 n—1 n—1 n—1 n—1
2 Z Abai ;b + Z Abaziti =~ bigp Z(2tibi) + biap Z(tf +2b7) + baayp Z tib;
i=0 i=0 i=0 i=0 i=0
n—1 n—1 n—1
ZAbQQ,ibi R b12\bztibi + b22\bzb?-
i=0 i=0 i=0
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The LU decomposition technique is applied to solve this system of linear equations [36].

It remains to show how to compute Ab11,;, Abi2,; = Abai,i, and Abaa ;. According to the proposal
presented by Rusinkiewicz [39], we perform this task in two steps. At the first step, we estimate the
curvature tensor at each vertex using the procedure presented in Section Then, for each vertex
v we compute the differences between the coefficients of its curvature tensor, b11, b1z and b2z, and
the ones of its adjacent vertex v, b11,i, b12,; and baa 4,

Abii; = biii—bn
Abi2; = biz; — bio
Abaa; = baz; — bao.

Nevertheless, the procedure presented in Section estimates the curvature tensor with regard
to a reference (t,b,n) chosen arbitrarily and independently at each vertex v;. There is no reference
connection between them. To make the subtraction physically valid, we should transform covariantly,
with the use Eq.[I5 the coefficients of the tensor curvature from the reference fixed at v;, (t;, b;, n;) to
the reference at v, (t,b,n). The derivative terms in Eq. are computed by the algorithm explained
in Section 2.5.4]

2.5.7 Gaussian and Mean Curvatures

The Gaussian curvature and the absolute value of the mean curvature are invariant under coordinate
transformation. After computing the principal curvatures (Section 25.2]), Eq. [0l and Eq. [[1l may be
used to determine the Gaussian and the mean curvatures, respectively.

Special attention must be paid to the sign of the mean curvature, which is dependent on the
parametrization. In most applications, it is desired that the Jacobian of two coordinate neighborhoods
is positive. For this reason, additional Jacobian test is performed to coherently adjust the sign of the
mean curvatures.

3 Related Work

It is a fact that the bending measures are crucial for enhancing the realism in the appearance of
simulated clothes. Recently, two problems have been investigated: which quantities can be used as
bending measures and how to appropriately formulate them for numerical implementations. In order
to not be extensive, in this section we will refer to some pioneering works that allow us to illustrate
the efforts in the last decades.

Physically based models are acknowledged to be the most promising ones for producing natural
appearance to the clothes in motion. They consider that the cloth dynamics are ruled by the partial
differential equilibrium equation at each point r [15]

*r or  SA(x,t)  9r Or
,LLW + QE + T = ;U'W + Qa —|—K(I‘, t)r(t)

= uF(r,1), (111)

where p is the mass density (mass per unit area), g is the coefficient of the damping forces that coun-
teract the intrinsic textile frictions and the external fluid frictions, F' denotes the total contribution
of external forces per unit mass on r and the term % corresponds to the internal energy per unit
area governing the cloth’s flexible appearance. The parameter K(r,t) is usually called the cloth’s
stiffness. Eq.[IIIlmay further be rewritten as the basic Newton’s law if we consider the friction forces
as a pure external or internal force [37]

WOE = K r(0) + (4 (r,0) — o)
- —(K(r7t)r(t)+Q%)+uF(r7t). (112)

Conjecturing that the stability and efficiency of a cloth simulation system may rely on the nu-
merical solution scheme for Eq. 011l or Eq. 012] a remarkable amount of effort has been spent on
it. The explicit integration methods reigned in ’90s [33, [37] 45 [16]. Only at the end of 90s’, Baraff
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and Witkin demonstrate in [2] the superiority of implicit (backward) numerical integration scheme
in comparison to the explicit (forward) ones. This is because in an implicit scheme the new velocities
r(t + At) are computed in terms of the force conditions at ¢ + At instead of t. For alleviating the
time-consuming computation of a large non-symmetric sparse linear system, Baraff and Witkin also
develop a modified conjugate gradient method. The results are so promising that, since then, a series
of works has been devoted to improve the implicit framework [14] 28] [I1] [8]. Nevertheless, simply
employing implicit integration method cannot overcome all instability problems that hinder stable
responses [I1]. Current research stresses that, because of its very particular behavior (comparatively
resistant to stretching and shearing and permissive to bending), there is still room for improving the
cloth’s model, specially its bending behavior [24] [44] [5].

There are essentially two approaches for modeling the microstructure of fabrics: the particle or
mass-spring paradigm, in which a fabric is considered as a collection of material points held together by
structural, shear and flexion springs for simulating its material mechanics properties [6} [7, [37], 2, 14, 1T}
8,135 [26]; and the continuum mechanics based technique, in which a fabric is regarded as a continuous
media to which the nonlinear thin shell or thin plate theory is applied for analyzing its stretching,
shearing, and bending/flexural behavior [19] 15| 0] [17] 46, 24, 25| [47] 44, [5]. It is worth remarking
that, after spatial and time finite differentiations, the particle and the continuum approaches have
similar ordinary differential formulations [14]. They differ essentially in the constitutive equations H
which are responsible for the internal force K(r,t)r(¢) due to the cloth deformation.

In the particle or mass-spring approach, the internal force is modeled as the resultant of the
tensions of the springs linking a point P; to all its neighboring points P;. Breen et al. propose an
angular expression for the bending measures [6]. They observe that a single thread can bend “out-of-
plane” around crossing threads and describe this phenomenon by the angle formed between each set
of three adjacent crossing nodes (or particles) in a rectangular mesh. More accurate control in the
bending shape is later proposed by Volino et al. [45]. They used the angle and the radius of curvature.
To improve the realism, Provot introduces in [37] the flexion springs to implicitly control the angular
variations and formulates the constitutive equations solely in terms of r and its derivatives. Unlike
the differential geometry approach, it is not sure that the angles can actually reflect the shape of
the surface in the vicinity of r and, therefore, the accuracy of the internal force response. To lessen
unrealistic residues due to the deviated force directions, Provot also proposes to define damping
forces for dissipating them. The results are so convincing that Baraff and Witkin reformulate the
angular expression in terms of the dihedral angles [2]. Detailed derivation of their expression may
be found in [§]. As the previous angular based algorithms, they still need the fictitious damping
forces to attenuate the unrealistic residual forces. Simply neglecting the in-plane stretching forces or
overlooking the interdependency of the angular and the linear variations is the main flaw of these
works.

The problem concerning the residual forces has been carefully analyzed by Choi and Ko who
conclude that it stems from the fact that the existing bending model cannot appropriately deal with
the cloth’s behavior under compression [11]. As a solution, they propose to separately treat the
“distension” (type 1 interaction) and the “compression” (type 2 interaction) cases, and provide a way
to predict the post-buckling (bending) responses in terms of the arc length, the distances between the
particles, and the bending stiffness. In essence, they turn to the point that Chen and Govindaraj have
already emphasized in [I0]: the link between the stretching and bending measures are crucial in cloth’s
modeling. From the theory of a Cosserat surface, which is founded on continuum mechanics, this
link may be represented by the product of the (current) stretching and (current) bending measures.
For avoiding complex expression, the initial bending measures are instead used in [I0]. In this work
we apply the Weingarten compatibility condition to naturally rule the in-plane and out-of-plane
deformations.

Departing completely from the mass-spring approach, the internal force in the continuum me-
chanics is expressed as a function of the variation of A(r,t) to the stretching measures € and to the
bending measures k:

d0A(r,t)  0A(r,t) n OA(r, t)
sr(t) — Oe(t) Ok (t)

While the changes of the coefficients of the first fundamental form (Eq.[I0]) are universally accepted

as stretching measures, the theories differ in respect of the quantities used as bending measures [34].

In analogy to the stretching measures, the changes of the coefficients of the second fundamental form

K(r, t)r(t) = (113)

2Relations that describe the connections between two physical quantities. Examples of constitutive equations are the
Hooke’s law, the Ohm’s law, the thermal conductivity, and the Navier’s equations.
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(Eq. @8] have been used as bending measures and the internal energy A(r,t) assumes the following
aspect [15] 1 [10L 111 []

pA(r, t) = e(t) " Crie(t) + r(t)T Caari(t). (114)

According to Grinspun et al., this formulation permits at most developable reference configura-
tions [24]. Motivated by the fact that many surfaces are not developable, they propose to choose
the changes of the mean curvatures as the bending measures. Very impressive effects of crease and
crumple have been achieved [47] [5]. However, it is not clear in their proposal how they distinguish
for example the bending effects in a sailcloth from the ones in a silk textile material, without re-
sorting to the Gaussian curvature. Although both fabrics possess the same “creasing” or “buckling”
behavior, in the former, the folds look stiffer — high resistance to the Gaussian curvature, and in the
latter, wrinkles are much softer — low resistance to the Gaussian curvature. Besides, Thomaszewski
et al. pointed in [44] that the stretching and the bending measures are not explicitly available in the
proposal of Grinspun et al.

Aiming at an accurate and consistent way of representing bending energy, which may reliably
reproduce characteristic behavior of different textile types, Thomaszewski et al. propose to model
cloth as Kirchhoff-Love thin shell [44]. Since Kirchhof-Love theory is only valid for cases where the
thickness approaches zero and the deformation is not too large, they further suggest to separately
handle the strains that are not rotationally invariant under large deformations by using rotational
strain formulation. Instead, we propose in this paper to employ the theory of a Cosserat surface for
cloth modeling. A Cosserat surface is a surface embedded in R® to which an out-of-plane vector d,
called a director, is assigned to every point. The theory of a Cosserat surface is exact, complete,
and fully consistent with dynamical and thermodynamical principles of continuum mechanics. It
was originally proposed by the Cosserats in 1909, rediscovered during the 50s for oriented bodies
modeling [18] and, later, for shell modeling [23].

Applying the general Cosserat’s shell theory to cloth modeling is not a novelty. Eischen et al.
present in [I7] a cloth model founded on a Cosserat surface, after the publication of a series of three
papers by Simo et al, in which they demonstrate that, despite its awkward formulation, a classical
shell theory is conducive to an efficient numerical implementation [40, 4T, [42]. The key point for
their finding is a new parametrization that avoids the terms such as the Christoffel symbols and the
coefficients of the second fundamental form. The price that they pay is to adopt relations that do
not explicitly associate shape quantities with the statical ones. The main contribution of our work
is to demonstrate that modeling the cloth as an inextensible normal-director elastic Cosserat surface
we may get an algebraic expression for A(r,t) with explicit relations between the geometrical and
statical quantities, It contains the components of both Gaussian and mean curvatures, that is familiar
to the graphics community. A wider range of deformation patterns have been, thus, achieved: we
may not only control the smoothness of the wrinkles and folds, but also their quantity on a given
surface area.

4 Cosserat Surface

In this section only formulas that we use in our work are transcribed in order to make clear our real
contribution. We refer to the detailed explanation in [20] as further reading.

Figure 16: A moving trihedron.
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Let s(t) = r(z*,z%,t) be a elastically deformable, smooth and non-intersecting surface at time
t, where z'- and 2%-curves are the coordinate curves lying on s. The z* are identified as convected
coordinates because any point on s has the same curvilinear coordinates in the reference state and in
the deformed statel. Also, let s(t) be referred to a fixed right-handed rectangular Cartesian coordinate
system (z,y, z) defined by the transformation relations

r=z(z', ) y=y(a', ) 2=z 2%).

For the sake of conciseness, the Einstein notation (Section 2:47)) is used in this section.
The first derivatives along the x“-curves are
or
8a(t) = 2 (1) = r.alt) (115)

and the unit normal to s(t) is given by

Or or
t) X t o(t) X t
n(t) = as(t) = f’gj( ) f’;j( ) _ ral®) xrpl)
2E(t) X ()] Ira(t) xrp(t)]
These quantities are linearly independent and build the basis vectors of a moving trihedron, of which
a; and as lie in the tangent plane normal to n (Figure [[7)). If a® denote the reciprocal basis vectors
of s, we have

(116)

3
as a3 =0 ag-az =1 a’=az=1 a; X ag-asz > 0.

Thus, the metric tensor of the coordinate system (51017510275103)7 when evaluated on 2> = 0 at time t
(i.e. in the deformed configuration), is given by

a1 aiz O
a21 a2 O (117)
0 0 1

Let a®? denote the components of its contravariant metric tensor and b2 the coefficients of the
formulae of Weingarten. In addition, let aqg, bag be the first of s and its second fundameSntal forms,
and a = ai11a22 — a12a21 the determinant of its covariant metric tensor in any configuration s(t). In
particular, we designate their initial values in the reference configuration s(to) = S by Aag, Bag and
A, as well as the initial basis vectors by A; and the initial position vector by R.

Assigning to every point of s(t) a deformable director d = d(z',z?,t), not necessarily along the
normal to s(¢) and having the property that it remains invariant in magnitude under rigid motions
of the surface, we have a Cosserat surface (Figure [I6)). The assigned director is intended to portray
the “thickening”about the surface s and its component along the unit normal to s can be regarded
as representing the “thickness” of s. In initial configuration we may specify the initial director D to
be directed along A3 and its magnitude as representing the initial thickness of s(to).

According to Eq.[I9 an element of area of the surface s(t) may be expressed as

do = ||a; x aq|| dz'dz® = (a1 x az - a3)dz'dz® = a?dz'dz’. (118)

In addition, in accordance with the equation of mass conservation, if p(t) denotes the mass density
of s(t), we have

m(s) =m(S) = // p(:cl,:cz,t)a%dxld:c2 = // p(xl,xz,to)A%dxldxz,
11,12 1‘1’12

even though both p and a may depend on ¢. An immediate consequence is the relation of the elements
of area in the deformed and undeformed configuration

pla',a? to) = pla’,a?,1)(5)7 (119)

4.1 Kinematics of a Cosserat Surface

The motion of a Cosserat surface is describable by the vector functions r and d. Figure[IT]illustrates
the change of the shape s(t*) to the shape s(¢t**) by displacing each point r and/or altering its
director. If we assume that these functions are differentiable with respect to £ and t as many times
as required, we may define the velocity v of a point of s(¢) and the director velocity w at time .

3The coordinate curves of s(t) will not generally be lines of curvature of s.
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Figure 17: A moving Cosserat surface.

4.1.1 Material Derivatives

Since the coordinate curves on s are convected, the time rate of change of the basis vectors a, is

given by

0, Or 0 Or
= 2t 9ea) = g2 3"

aq

They are also known as material derivatives of ao. If we take the velocity v with respect to the basis

a; = {aq, asz}, namely

or i i
V=—=97va ="va
ot ’
and derive it with respect to the convected coordinates, we get
. 8 81‘ i i B8 B8 3 3
o = @(E) =Va = Va8t =0,a8 10 aga+ Va3 +0 a3,a
_ i i 8 8 3 3
= Viea + Vi@ o = UB,ad  + VA, + U3,aa + v3a o
a3 =V,3 = 03a; +va;3=uv;3a + via 3.

Using Eq. [[Q and Eq. BIl we may write

Aq =V,

v as + UB(Fgaap + bgaas) + vhas + v’ (—bhag)
(vf1 + vﬁfga)ag + ’L)Bbﬁaag + v?aag — v3b§a5

W’ —0*b2)ag + (v7bsa + v3,)as.

e

And with use of Eq. and Eq. B3 together with a® = a3, we obtain an alternative formulation to

the material derivatives

vgad” +vp(~Thaa” + blaz) + vsaa® + vs(—bgaa”)

Ay =V, =
= (vg,a — vgffa)aB + vgblia® + vz 42 — v3bgaa’
= (Ugja — vsbpa)a” + (vsbl + v3,0)a°
= (vgja — v3bga)a’ + (vabl + v3.4)as. (120)
Asas-az3=0,a%-as=0and as-as =1, we have 4, -as +a, -as = 0 = a, - a3 = —a, - as.
In consequence,
a; = —a%(a.-as)

—a” (v, — v*b2)as + (v"bsa + vl )as) - as)

|e

= —a®(((vgja — v3bsa)a” + (vsba + v3,.0)as) - a3)
= —('l)ﬁbga + v?a)aa = —(vai + v3,0)a”. (121)

For convenience, let us summarize the gradient of a vector field V referred to the basis vectors a;
or to the reciprocal basis vectors a*

where

Vo=V, =Viaa =Via, (122)

‘/ia:ai'v,a Vg:ai'v,a
Via = Vaja — barVs Vo
V3a = VB,a + bgVA ‘/:?1

=MV =V — b2V
= VB,a = ‘/,i + bAaVA .
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In particular, we may express the material derivatives as a linear combination of the reciprocal

basis vectors a*
. k .
a; = Cp;a — Cki — ag - a;.

The elements cg; build a square matrix which may be expressed as the sum of symmetric n and

antisymmetric parts v

al~é1 al~é2 al-ég

2 . 2 . 2 . 1 T 1 T
C=|a a1 a -a a- a :§(O+O)+§(C—C):n+¢.

3 3

a 'E:l1 a-éz a3-é3

The components 71,3 are referred to as surface deformation rate tensor and ag, surface spin tensor.

The material derivatives may be expressed in function of them

a; = (i + Yri)a”.

(123)

Applying Eq. [[20] and Eq. 121l we may write the components 7,3 and 1as in terms of the velocity

and the differential geometry quantities
2Map = 2Nga =an-ag+ag-as
= aa - ((Vajp — v3bap)a™ + (vabj + v3 p)as) +
ag - ((vgja — vsbsa)a” + (vsba + vs,a)as)

= (vaw — v3bag) + (Uma —v3bga) = Valg + Vgla — 203bag

2Na3 = 2N30 =84 A3+ as-aq

= = (Vabj +v3,5) + (vabj + v3,5) =0
2ns3 = az-az+az-az=20
2thap = —2Wap =8a A3 —8p - Aa = Va|g ~ Ugja
Waz = —230 =24 a3 —az-aq = —2(vabl + v3,0)
2133 = az-az—az-az3=>0

4.1.2 Change Rate of Reciprocal Basis Vectors

(124)

(125)

It is also disable to obtain the time rate of change of the reciprocal basis vectors of a Cosserat surface

when it is subjected to a velocity field.
Taking the derivative of Eq.

d(a®*axg) =0

— éaﬂa)\a + aﬁué)\v =0
— éaﬂa)\a = —aBUé)\U

. A .
= a® = —a**aVa,,

together with Eq. 21l Eq. 123 and Eq.[I24] we obtain the desired result in terms of 1, and ¥azs

. . a\ A
« a“tay + a“tay

a =
= (—a*a’ag,)ar +a" (Ner + Pur)a")
= (—a*a’(2npu))axn +a" ((ex + Prr)a”)
= a®((Yrr — nmr)a")

2'13 = é3 - wHBaH-

4.1.3 Change Rate of Director Vector

(126)

Kinematical results in terms of the director displacement d are also of interest to characterize the

deformation and motion of a Cosserat surface. If we refer d to the basis vectors a’

d = d;a’ = dea® + dza’®,
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then from Eq. [120]

w=d = doa”+daa” +dsa’ + dsa®
= dia' + daa™ ((her — ner)a”) + dgtpesa”
= dia' + daaa’\((z/)m —nea)a”) + d*nsa”
= dia' + dA(—nm)aN + diepia”™.
(dk + di(wki — nki))ak. (127)
If we further define
= —MNkxa,

we may get a more compact formulation
w=d=d;a’ + d’\ﬁA + diz/)m-a”. (128)
According to Eq[122] the gradient of d is
do = Xiad’ = Mgad” + X302’ = (dgja — bpa)a” + (ds,a — bldg)a®. (129)

Also, from Eq.[I127] we may have the gradient of the director velocity w or the time rate of change
of the director derivative with respect to the convected coordinates

( k),a + (dil/}kiak),a — (din;ﬂ-ak)ﬂ
= (dpa") 0+ (d'Yria") .0 — (d'F) 0
(dra®) o + Natopia® — A\2ijs

s

Wao=do = (dra

where
Ao=a""Ma N =N (131)

) ’

4.1.4 Change Rate of Area Element

To compute the time rate of change of an element area given by Eq.[I9 we use Eq. 23] and Eq. 124
to derive
0(ai1aze — aisaz:)

o= o = a22a11 + a11G22 — G12421 — A21012

a(all)du + a(a22)d22 + a(a21)d21 + a(a12)d12
a(all(va — 2b11vs3) + a22(2v2‘2 — 2baovs)) +
a(a® (vaj1 + v1j2 — 2b1203) + " (v1ja + Va1 — 2b2103))
= 2!1((11111)1 + alzvz)u - (allbll + alzb21)v3) +
2a((a21v1 + a22v2)‘2 — (a2lb12 + a22bzz)v3)
= 2a((v‘11 — biug) + (v‘22 —b3v3)) = 2a(vS — blv3).

Defining

na — lcfld
« 2 )

we may rewrite the integrand and the domain of integration of Eq. [I9 as the element of area
1
do = a®da'da’.
Then,

1
do = Mdmldm2
ot

1 1. 9. o 1 3 1.1, 9
= —a 2dadxr dr’ = =a a?adr dx

= nado = (vg — bavs)do (132)
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Figure 18: Superposed rigid body motions: (a) position velocity and (b) director velocity.

4.1.5 Superposed Rigid Body Motions

It is interesting to know whether the above-mentioned kinematical quantities remain invariant under
superposed rigid motions b and &, representable by W, an orthogonal tensor-valued function of ¢ or an
affine transformation matrix. The vector b may be interpreted as a uniform rigid body translational
velocity and & is a uniform rigid body angular velocity at time ¢t. Under such motions, the position
r and the director d at r are displaced to the position r* and the director d* at r*, such that

o= 2 t) = (2h 2 o) + W(r(z', 2%, t) — r(z', 2%, 1)) =
R*(z',2%) + W(r(z", 2> t) — R(z', 2°))
d° = d'(z',2%t) = w(d(z", 2% t)). (133)

In this case, the magnitude of the relative displacement |[r — R| remains unaltered
[r* —R"|=|r — RJ.

Hence, the element of area of the surface s and its mass density p remains unaltered. In addition, all
kinematical quantities related with the material coordinates, such as ang and b,g, are preserved

a,=a, az=as d,=da ass=0aas bhsg="bas
The superposed velocity and the superposed director velocity become (Fig. [I8])
rr=v" = v+[b+dxr],
d*=w" = w+dxd
The superposed velocity gradient at time ¢ is then
a*, =Va=Va+b+dXr]a=Va+&Xrqy=2as+d X aa.

Since the cross product can alternatively be defined in terms of the e-system (Eq.[22]) and the basis
vectors and their reciprocal ones satisfy Eq. 221 we may define

m — m
w = J-a
Qka = 6Icon’n‘*)rn = ekam\/aw7n
and rewrite the expression as
- . R . k_ . k
a*q = 80 + @0 X 2y = aa — (Eramvaw™)a"” = o — Qraa”. (134)

If we replace a; in Eq.[124] and Eq.[125] by a; + & x a;, we get
Mei = Mhi Yk = Vri — D (135)
From Eq. [128 we deduce the superposed director velocity
d'=w" = w+dxd
= (di +d" (% — mii))a"
= (di+d (Y — Qi — nis))a"
= (dx +d' (i — miey))a" — d'Qpa"
w+ d'Q;a" (136)
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Figure 19: Forces and couples acting on s.

and its gradient follows directly from Eq. [130]
do=wo = (dia")a+Nivna" — NI
(dra®) 0 + Na(Prs — Qi)a® — N iis
= Woao— )\faQ;ﬂ-ak

= W+ N Qpa” (137)

4.1.6 Alternative Kinematic Measures

Besides the kinematic quantities presented, which involve mainly aag, Aag, di, and their derivatives,
it is often convenient to use the following measures

1. Membrane strains (g.3)

1
€ap = 5(aap — Aap) (138)
2. Bending strains (kg;)
Rag = )\aﬂ — Aag
K3a = )\3a - A3a7 (139)

where Ao = A;D , are the values of ;o in the initial configuration.

3. Director or transverse shear strains (J;)

4.2 Dynamics of a Cosserat Surface

These strains are results of the internal forces due to the action of the proper surface or the external
loading forces. We proceed to characterize the basic field equations for a Cosserat surface.

Let o be the area of a Cosserat surface s bounded by a closed curve c¢. Let ¢ = c(z'(Jf), z2()))
be the parametric equations of the curve with [ as the arc parameter; and let 7 represent the unit
tangent vector to c¢. Then

, Or or dxt dr dr? 1 2 o
T= = + =ai17T +axr =7 aa

af — ozl df ' 822 df
and the unit normal vector 7 to ¢ lying on the surface is
V=7xaz =r.a" =v%a, = EaggTBaa = ar'as — Var’a, (141)
where €;;, has been introduced in Section. Conversely, 7 can be expressed as

o iR 1 1 1
T=a3 xUV=a3 X v,a® = —eaﬁsuaa[g = —pjas — —1naj. (142)

Va Va Va
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Figure 20: A curvilinear triangle.

If for all arbitrary velocity fields v, there is a three-dimensional force field N = N'a; defined for
points of ¢, such that the scalar N - v represents a rate of work per unit length df of ¢, then N is
a contact force (or curve force) vector measured per unit length of ¢ that acts across c¢. Similarly,
if M = M'a; is a three-dimensional vector field and if, for all arbitrary director velocity fields w,
the scalar M - w represents a rate of work per unit length of ¢, then M is a contact director (or a
curve director) couple measured per unit length of ¢ (Figure[I9). In an analogous way, we may define
F = F'a; and L = L'a; as three-dimensional vector fields per unit mass for points on o. If F - v is
a rate of work per unit mass, then F is an assigned force per unit mass of s, and if L - w is a rate of
work per unit mass, then it is called an assigned director couple per unit mass of s at time ¢.

If p is the mass density at time ¢ per unit area of s and U is the internal energy per unit mass,
then the equation of conservation of energy may be written as

8(]0[%pv v+ pUldo)
ot

:/p[ﬁ—&—F-v—i—fJ~w]da—&—/[N~v—&—1\/I-w]dc—/hdc7

o (& (&

. . 1 . o o
Jlov v o0+ [ Gy 4 U+ ol el =

/p[19+F~v—|—i~w]d0+/[N~v+M-w]dc—/hdc,

o c c

: 1
/ plrdo + / (3w v+ UYj + plufs — bivw)ldo =

/Up[ﬁ—k(F—\‘/)~v—|—E~w]d0—|—/c[N~v+M~w]dc—/Chdc, (143)

where L is the difference of the assigned director force per unit mass L and the inertia terms due to
the director displacement d, ¥ is the specific heat supply (or heat absorption) by radiation per unit
mass per unit time, h is the scalar heat flux across ¢, by conduction, per unit lenght per unit time.

In this section we present five basic sets of fied equations for a Cosserat surface: conservation
of mass (Eq. [[46]), linear momentum principle (Eq. [50), director momentum principle (Eq. I57),
moment of momentum (Eq.[I60), and the balance of energy (Eq.[IG8]).

4.2.1 Elementary Curvilinear Triangle

According to Eq.[I43]the resultant contact force and the resultant contact director couple exerted on
o at time t are defined by the line integrals over the boundary c. It is, therefore, convenient to relate
the element of arc length of each coordinate curve, ds., to the element of arc length of c. ds.
Starting with the fact ) )
dx dx
ds1 = N dss = \/@.
If we adopt the convention that if one proceeds along a closed curve, the bounding area is always
kept to the left, the unit tangent vectors to the coordinate curves are

(1) ai -(2) az
T = T =
aii \/ a22

and the outward unit normal vectors to them are

ﬁ

2
A . (144)

3
:

a2

49



Using Eq. [[42] we may write

\/ﬁd 14+ — \/_ = eaﬁ?’l/aagds
1 1 1 1
— [6113%311/1 + 6123%2-127/1 + 6213%31V2 + EQQSEanQ]dS
= [\/i_l/lag — %Vzal]ds
a a

Matching the terms on the both sides of the equal sign, we have

1 1 Vail
——ds) = —=vods = ds1 = ds = Va2vad
\/ﬁ S1 \/61/2 S S1 \/a rva2das a““rv2as

Ldsz = Lulds = dsy = ~ 22 vids = Vallvids. (145)
as2 Vva Va

4.2.2 Contact Force Field

Differentiating the terms on the right-hand side of Eq. [T43] and supposing that the quantities p, U,
9, h, F =v, L, N, M and w remain unchanged under superposed uniform rigid body translational
velocities b, that is after replacing v by (v + b) in Eq[I43] and subtracting Eq. [43] from it, we get

b- {/ (pv — pF) da—/Ndc+/ vip+ p(vl — b3vs)|do} +

500-b) [ 5+ 0ty = bl =0

But, since the law of the conversation of mass, together with Eq. [I32] allows us to state

d
[ 2582~ [ vy ptof ~ vunlas) = (146)
we have

/J(p\'/ — pF)do — /cNdC =0. (147)

Let n® and n® be the physical force vectors acting on te sides of the coordinate curves with the

. 1 . .
outward unit normal vectors \/a—_ and \/—_ so that for the outward unit vector given by Eq. 144l

211 22
they are —n™ and —n®. Let N denote the physical force over any curve ¢ with the outward unit
normal 7. In the limit, the curvilinear triangle shown in Fig. approaches its boundary curve and
Eq. 47 becomes

Ndc = Nds — n(z)dsl — n(l)dSQ.

Applying Eq. [[45] we have
N = n®Vva2, + nWVally, =N = (na\/ﬁ)ua = N, with N = n®v/aoe,
and expressing the contravariant surface vector N as a linear combination of the basis vectors
N® = N"%a, 4+ N*“a3, (148)

we may write

N = (N, + N*¥a3)va = (N"%va)a, + (N**v,)as. (149)

N and N3¢ are surface tensors under transformation of the convected coordinates.
Substituting Eq. 48] into Eq. [47] making the usual smoothness assumptions and transforming
the line integral into a surface integral by Stokes’ theorem, it follows that

ot =) = NiuJao =0

and, in consequence, we have the first basic field equation of motion for the Cosserat surface

N}, + pF = pv. (150)
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Taking the scalar product with a®
aB~Nf‘a+pa5(F—V):0
and applying the derivative rule
(@" N, =a’ -NJ, —|—a’fa SN,

we have

(@’ N%)o —N%-a +p(F-v)-a’=0.
Similarly, with a3z we get

(a3 -N%)|o =N a3, +p(F -v)-a3 =0.

Further, letting ¢* be the component of acceleration v and using Eq. B0 and Eq. BIl we reach the
component form of Eq. [I50]

NiS = baN** 4+ pF? = pc’

N —bagN* + pF* = pc® (151)
4.2.3 Contact Director Couple
Using Eq. and Eq. [[50, Eq.[I43] assumes the following aspect

. 1 ) o e .
/pUda—&—/{iv-v—&—U}[p—i—p(v‘a—bavg)]dor:/pUdaz

/U[pﬁ+P(F_‘7)'V+PE'W]dU+/[N'V+M.w]dc_/hdc:

(& (&

/p[ﬂ+11~w]da+/p(F—\'r)-vda+p+/[N-v+M~w]dc—/hdc:

o o (& (&

/p[19+f;-w]da—/Nf‘a-vda'+p+/[N-v+M~w]dc—/hdc

On the other hand, we have from the Stokes’ theorem

/N~Vdc:/(N-v)‘ad0:/(Nfa v+ N v ,)do.

Putting them together, we reduce the energy balance (Eq. [I43) to
/ pUda' =

/p[19+1_;~w]d0—/N‘aa-vda'—i—p—i—/(N‘aa-v—&—Na-v,a)da—&—

/M~Wdc—/hdc:

/[p(ﬁ+i~w) + N*° ~v’a]d0—|—/M-wdc—/hdc. (152)
If we replace w by (w +w x d) and v by (v + w X r), then by subtraction we can deduce

/(aa x N® + pd x L)do + /(d x M)dc = 0. (153)

o (&

Let m™ and m® be the physical director couple vectors acting on the sides of the z'- and

22-curves whose outward unit normal vectors are —2— and —2—. Let M denote the physical contact
Vall Va2 4

director couple acting on any curve ¢ with the outward unit normal 7. By an argument similar to
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that which led to Eq.[I48] the curvilinear triangle shown in Fig. approaches its boundary curve in
the limit and the application of the director momentum to an elementary curvilinear triangle yields

M=M'"v +M?>v, M*=m Vg, (154)

M*® transforms as a contravariant surface vector. In addition, the line integral in Eq. [[53] may be
transformed into a surface integral by Stokes’ theorem

/[p(ﬁ —U+L-w)+N*.v,]do+ /(Mf‘a W+ MY w o )do — /hdc =0. (155)
If we set
M® = M"“a, + M**a3, (156)

then the components M*® are surface tensors.
If we admit the existence of a vector field 1, an intrisic director couple per unit area of s, we also
have the following conservation law — the director momemtum principle

1=pL+Mj,, (157)

Taking the scalar product with a® or az and applying Eq.B0land Eq.[BI] we may obtain its component
form in a similar way that we get the component form of Eq. [I50]

MES —baM* +pL? = 1P
MY = bagMP* + pL* = 17, (158)
Then by combining it with Eq [I55] we have
/[pﬁ—pU+1.w)+N“.v,a+M“-w,a]da—/hdc:0, (159)
and with Eq. 53] we get
as X N*“+dx1+doxM*=0. (160)
Using the permutation symbol (Section 2.2]), we may rewrite it in component form
€jim(BAN'Y) + €jim (1) + €jim (Mo M) =
ejim[OLN'™ + &1 + Ny M™] =
N3 4 (1Pd* —1°d°) + MPA%, — M7\, =0 (161)
4.2.4 Flux of Heat

Let A and A® be the flux of heat across the coordinate curves whose outward unit normal vectors

are 2. Let ¢“ the contravariant components of the heat flux vector across any curve c

—a_ and —2—
Vvaii Va2
with the outward unit normal 7. By an argument similar to that which led to Eq.[I48] the curvilinear
triangle shown in Fig. approaches its boundary curve in the limit and Eq. 159 becomes

hdc = ¢®vads — BPds; — hPdsy = 0 = q* = R /qee, (162)

Transforming the line integral in Eq. [[59] into a surface integral, we finally get for an arbitraty
surface area

/[p'ﬂ—q‘o;—pU—|—1~W+NQ~V7a+Ma~W7a]d0':0

P9 — g —pU +1-w+ N v, +M* w, =0. (163)
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4.2.5 Superposed Rigid Body Motion

In Section we have seen that the element of area and the mass density remain unaltered under
superposed rigid body motions. In this section, it is of our interest to verify how the forces N, M,
F and L behave under these motions. Then, we will see how the basic field equations for a Cosserat
surface should be changed.

In Section and Section [£2.3] we have seen that N and M are defined over a curve c on the
surface with the outward unit normal vector Z. Under superposed rigid body motions the orientation
of the surface may change in 3D space, so the outward normal vector of the same material point
may change and becomes *. Nevertheless, because the transformations are distance preserving, we
expect that the forces N* and M* satisfy the following conditions:

o [[IN"[| = [IN|| and [|M"|| = [[M]};
e to have the same orientation relative to U* as they have relative to 7.

The force fields F, L and 1 are defined throughout a region of s. From Eq. [I50] and Eq. 157
we may deduce that they transform in the same way as o/ under the superposed distance preserving
transformations.

Once under superposed rigid body motion the shape of the Cosserat surface keeps invariant, we
should again deduce Eq. [I60] and Eq. 163l

a, x N +d" x1"+d, x M =a, x N* +d x1+d,o x M* =0.
P — g — PU 17w £ N v, + M wh,
pﬁ—qm—pU+l-w*+Na-vfa+Ma~wfa =0

From Eq.[123 Eq.[I34] Eq.[I36, Eq.I37 and the fact that 1x; = Qk; under superposed rigid body

motions, we may rewrite Eq.[I63]in an invariant form
pﬁ—qﬁl—pU—FLW*-&-Na-vfa—G—Ma~wj‘a =

pO — qfty — pU +1- ((dy + d' (s — mpi))a” — d'Qpia")

N ((ka + Yra) — Qa)a®)

M ((dra®) o + N (Yri — Qui)a® — Noifs)

PO —qfn — pU +1- ((di, — d*nra)a” + N¥npaa® +

M - ((dra"),a = Nails) =

P9 = go = U + (N* - jig — 1 d e — M7 N i )a" +

1-dpa® +M" . (d.kak),a =

P9 — g — pU + (N —1.d% — M"N )ppaa +

1-dpa® + M® . (d'kak)ﬂ =

po — qf; - pU + Nlankaak +1-dga® +M®. (d‘kak)ya7

- -

where ,
N*=N*-1.4*-M"\?,.
In component forms, we have
p9 = gy — pU + N P nas + 1Fdy + M Aiq (164)

with the symmetric components

N8 = N'5& = NP* _med® — M1A8, (165)

4.3 Thermodynamic

Eq. 0641 which involves the specific internal energy U, can be written in terms of an alternative
thermodynamic potential, namely the specific Helmholtz free energy. For this purpose, we introduce
a Helmholtz funcion per unit mass

A=U-TS§, (166)
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where S is the specific entropy per unit mass and the positive value T is the temperature. The surface
integral over an area o of s
/ pSdo
o

is the entropy of o and the production of entropy per unit time in o at time t postulated by the

following inequality
/Udeo—/ap%do—/C%dcz 0. (167)

The second term in Eq.[167is the entropy due to radiation entering o and the third term is the flux
of entropy due to conduction entering o through the boundary c.
Replacing U in Eq. 064 by A — TS, we have

p — qf; — pA ~ TS+ N/*Banag +1%dy + MF* M\ =
pY —qfs, — pA— p(TS +TS) + N/Banag + 1Fdy + M" Ao = 0. (168)

Replacing h in Eq. [167] by Eq. [162] and applying Stokes’ theorem to the line integral, we obtain

/pS’da—/ da—/—dc—

. 9 Q\a q ,a
/deo—/pfda—/(T— T )do =
/pTSdo—/p'ﬂdJ—/q‘

/ (pTSdo — pd — (gt —qT’”‘»dozo,

o

which leads to the following inequality

pTSdo — p9 — (qf, — q_) >0 (169)

5 Elastic Cosserat Surface

We define an elastic Cosserat surface as one for which the following constitutive equations hold for
all time ¢

A = A(T,eap, kpi, 0, Ngi, Di),
S = S(T,eap,ksi,0i,Ngi, Di),
a* = (T, T, &8, Kpi, 0i, Agi, Di),
h = h(T,ecap,kpi,0i, Agi, Di, Vo),
M' = M (T,eap, kpi,di, Api, Di,va),
N = N'°%(T,eys, i, 0i, Ayi, Di),
m' = mi(T75757H7j75j7A7j7Dj)7
M = Mia(T75“/57K7j76j7A’Yj7Dj)7 (170)

where the strains €., £g; and §; have been defined in Section [4.1.0]
Combining Eq[I69] and Eq. [I68] we reach the following energy equation

q°T,

—pT'S — pA+ N'P%nap + 1"dy, + M Ao — =2 >0 (171)
From the constitutive equations,
. 0A 0A 0A 0A
A= _—=dT dea déi + ——dkia-
T T e P T 95, T B
Then, by plugging it into Eq.[I7I] the expression becomes
0A "Bax 0A k 0A . ; ke 0A q°T o
amr - « - ac - o T - >
08+ T+ (N = o + (1 = g (MH = v — T >0
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Green et al. state in [23] that, if the temperature distribution varies homogeneously with time,
then

oA Nof _ 0A = pBA M= 0A

orT 853Q 8(51 8/%,1

When an elastic surface is initially isotropic with a center of geometry and assuming that A is a

polynomial function with arguments indicated in Eq.[I70and A does not depend explicitly on A;, and

D;, then we may write A as a function of the joint invariants of these arguments. For convenience,
Green et al. introduce in [23] the notations

S =

—an,a 2 0

k= A" kg kP = AP Ky Ky = A% kg, 5% = A4,
and the 2 x 2 marices
I=ej J = K u =Ky v =4
K =uu” P=uw" PT = ou” Q=w". (172)

Then, A may be expressed as a function of 7', d and the following twenty-four joint invariants from

the traces of matrices
trace(I) trace(J) trace(K) trace(P) trace(Q)

trace(I*) trace(J?) trace(1J) trace(IJ")

trace(IK) trace(IP) trace(IQ)

trace(JK) trace(JQ) trace(JP) trace(JPT)

trace(IJJ")

trace(IJK) trace(IJQ) trace(IJP) trace(IJPT)

trace(JJ'K) trace(JJ'Q) trace(JJ" P).

5.1 Infinitesimal Deformations

Green et al. also show in [23] that if we consider that the material point displacements and the director
displacements, as well as their material coordinate and time derivatives, all kinematical quantities
and all contact forces, remain small of the order infinitesimal, Eq. [[68] assumes the following aspect

pod — Qf — poA — p(TS +T8) + N %5 + 176, + M* iy = 0. (173)
and the constitutive equations become
0A ; 0A ; 0A

I = M =
14 Po 8/‘%& )

h=1v8Q, N8 — oa
v Q P e sa °96;

(174)

where po is the initial mass density, Q. are the components of the heat flux per unit length (in the
undeformed surface) per unit time, and v§ are the components of the unit outward normal to the
x%-curves on s.

If the surface is initially homogeneous, free from curve and director forces, and in the state of
rest at a constant temperature Tp and entropy So, then to the order of approximation considered,
it is sufficient to express poA as a quadratic function of €np, Kia, §; and T, where T is now the
temperature difference from Typ. Thus, if So

poA = C7Peapeqs + O3 kaghias + C5 e aphing +

CYP kgatkipy + C5 M eapdy + C5 M eaphay + C77 arpy +

Cfﬁ(saég + 020‘5/43(1/435 + C;*B(Sa/{gg +

Cf’ﬁéfa/;‘(;s + C’?’BHQB(SS + C’;aﬂaagT + C;O‘Bma/jT +

C56405 + C5 kizads + C126aT + CykaaT +

C(85)2 +C'T? + C" 85T,
where the coefficients C, Cl, Cy, C;La, C2P C2PY and C2P7% n e 1,2,3,4,5, are constants and some
of them satisfy certain symmetry conditions

O;JBW(S — Ofawé — Claﬁé'y — Ciy&aﬁ
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CeP =3P o =0 e =g (175)
If the surface possesses isotropy with a center of symmetry, a tensor basis is given by A% and all
odd order coefficients must vanish

C?ﬁ"/ — C;ﬁ"/ — O?BW — O;IBW =0,

CY =05 =C% =0y =0. (176)

In addition, the remaining coefficients must be homogeneous, linear functions of products of A%#,
e.g.

cpPre 1 AP A 4 AT AP g A AP

CPor = APAY 4 b APTAY 4 a5 APO AT,

Because of the symmetry conditions stated in Eq. [I0} Eq. [I75 Eq. [I76, we have as = ag. Similar
arguments can be applied to other coefficients and the free energy ppA may be reduced to the
expression

pod = %[alAaﬁA“‘ + aa(A%TAP L A AP e e +
1 N 1 , 1
50{314 /8(5,1(55 + 50(4((53)2 + 064(53T + 50(4 T2 +

%[%AQBA”“ + ag AT AP 4 0r A% AP kg kins +
1
2
[a10 AP AT + a1 (A AP + A% AP e nprins +

OclgAa’Blﬁagég + OC;QAQBK/aﬁT + a13Aa’8(5aI€35. (177)

OégAaBHgaﬁgﬁ + ongansagég + a;AaﬁEQBT +

and the components of the curve, the intrinsic and the director forces (Eq.[I74]) assume the following
form

N = [0 AP A" 4 a (A% AP + AP AP )]e s +
[0 AP A 4 011 (AT AP? + A% AP ks +
a9 AP 55 + ag AT, (178)
I = azA""6y + a13AY K3
Po= ouds+a,T+ 9 AP e 4+ 012A Ko (179)
M*? = [asA*P A 4+ ag AT AP° 4 a7 A% AP ks +

[a10 AP AT 4 11 (A7 AP° + A% APY)e, s
aleaﬁ(s;g + a;QAQ’BT
M3a = agAa'Yl‘i;gw + a13AaﬁT, (180)

where the coefficients «,, and a;l, n € {1,2,...,13}, are constants.

5.2 Cosserat Surface with Undeformed Director

Green et al. further developed in [23] a set of basic force equations for the cases in which directors
coincide with the (unit) normal vectors at any time ¢, that is d(t)=as3(t) = n(t), they call it an
inextensible normal-director Cosserat surface. In this case

do =0 ds =1 D, =0 D3 =1
From Eq. it follows immediately
Aag = —bagp Aza =0 Aop = —Bag Aso =0,
and by replacing them in Eq.[I39 we have

Rag = —(ba/g — Bag) R33 = 0. (181)
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Furthermore, from Eq.[121] we deduce
w=d=a3=—(vgb> + v3,0)a". (182)

The expression for material derivatives a; given by Eq. and Eq. [I2]] remain, however, the same.
The five basic sets of equations (Eq. [[46] Eq. 150, Eq. 057 Eq. D61 and Eq. [I68) may be simplified
with use of Eq. [I&1] Eq. and Eq [I311

Eq. 061l becomes

N3 =128 + MPA%, =1 + M* a0 Ng, = 1% + M*a*Pbgy = 1% + MP7bS, (183)
while N? that appears in Eq. may be expressed as follows
NP N8 L 190% + MM = NP 4 M*\°, =
NP MO (aPbsy) = N'P* — MOTBE. (184)

And, once dix = 0 and )'\/Ba = Bga = Rga, Eq. [I68] the equation of balance of energy, assumes the
form ] ) ) ,

PO — g — pA—p(TS+T8)+ N *nos + M ks, = 0. (185)
If we combine Eq. [I83] with Eq. [I58 we have the modified expression for the moment of momentum
principle

N* = MJ* 4 pL”. (186)
Putting it together with Eq.[I51] we get an expression for the linear momentum principle
N‘ia - be"La +pF" = p(® +b5L7)
MP% 4+ 0N+ pF® = pc’ = (pL7)j5, (187)

and plugging it into Eq. [[57, we obtain the modified component form for the director momentum
principle

N** - My = I”
MR +bagM® +pL* = 1. (188)
Finally, the free energy poA assumes the form
A= A(T,eaB, kap, Bap)
and the constitutive equations are reduced to

0A
Ocap

0A

N =
P OKagp

M =p

(189)

When the surface is initially isotropic with a center of gemetry, A may be expressed as a function
of T and the joint invariants

trace(I) trace(J) trace(L)
trace(I*) trace(J?) trace(L?)
trace(1J) trace(IL) trace(JL)
trace(IJL), (190)

where I and J are defined in Eq.[I72 and L = A*" B, 3.
We remark that throughout this section and the following sections, all covariant differentiations
are with respect to the metric tensor A,g of the undeformed surface.

5.3 Discrete Cosserat Surfaces with Undeformed Director

The main task we should undertake is to make the analytic expressions developed for the Cosserat
surface readily processable by a computer.
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5.3.1 Membrane and Bending Strains

The simplicity of Eq 087 Eq. and Eq. does not reveal the complexity of its component
equations. While Eq. requires the first derivatives, Eq. [I81] may involve the products of normal
vectors and second derivatives. Fortunately, Section[2.5]already provides us a procedure for estimating
the geometric quantities ang and bog for a reference system that takes into consideration the lengths
of adjacent edges. Our problem is then reduced to the computation of the variations of reference
systems (new_t,new_b,new.n) in time. For convenience, we denote the reference systems at time
t by (new_t(t),new_b(t),new_n(t)).

We propose to track the variations of the edges v;v;+ and v;v; p that have been chosen to build
the reference systems in the rest state (new_t(to), new_b(to), new_n(t¢g)). For each vertex v;, the
metric tensor at to are the reference values that appear in Eq.

A11 = new_t(to)-new_t(to) A12 = A1 = new_t(to) -new_b(to) Az = new_b(to)-new_b(to),

while the coefficients of the curvature tensor with respect to the reference (new_t(to), new_b(to), new_n(to))
are set as the reference values that appear in Eq. [I8]]

Bi1 = b11(to) Biz = Ba1 = bi2(to) Baa = ba2(to).

At each time ¢ we apply the procedure given in Section to estimate the principal curvatures
k1(t) and k2(t), and the principal directions, d(1)(t) and d2)(t), at each vertex v of the deforming
mesh. Eq. [03] is used to transform the estimated curvature tensors from the reference (d(i)(t),
d(2)(t),new_v(t)) to (new_t(t), new_b(t), new_n(t)), namely bi1(t), b12(t) = b21(t) and ba1 ().

Using the deformed reference system at time ¢, (new_t(¢), new_b(t),new_n(t)), we compute the
metric tensor for each vertex

a11(t) = new_t(t) -new_t(t) ai2(t) = a21(t) = new_t(t) -new. b(t) a2 (t) =new_b(t) new_b(t).

To get the membrane and bending strains at time ¢, we subtract, respectively, the coefficients of
the metric and curvature tensors at tog from the coefficients of those metric and curvature tensors at
t. It is worth remarking that our local reference systems are convected with the reference vertices,
vi, vi; and v;p, whose spatial locations vary with time. Therefore, it is not necessary to carry out
the coordinate transformations in the subtractions.

Finally, we re-evaluate the basis vectors of the deforming reference system for the next time instant
(new_t(t+ At),new_b(t + At),new_n(t + At)) in accordance with the new positions of v; + and v; s,
as detailed in Section 2-5.3l This procedure is repeated successively until the deformation end time
is reached.

5.3.2 Surface Deformation Tensor and Surface Spin Tensor

Under the assumption that the directors coincide with the normal vectors (o; = k3o = 0 in Eq. [[77])
and the temperature T' = 0, we get from Eq. [[78 and Eq. [I79 the components of the intrinsic spin
tensor and the components of the intrinsic tangential tensor in each sample point at time ¢

MP(t) = [asA*PA +agAT AP 4 ar A% AP ks (t) +
[oeloAaﬁA'y(S + (3511(141(”14&S + AMAM)]EVS (t).
(01 A AT 4 ap (AT AP + A0 AP )]e s (1) +
[oeloAaﬁA'y(S + (3511(141(”14&S + AMAM)]’WJ (t).

N8 (t)

The components of the intrinsic deformation tensor N®? (t) follow immediately from Eq.[I84]

NP (1) = N3 (1) — M"Y (£)(a® (£)bs (1))- (191)

5.3.3 Covariant Derivatives of Surface Tensors

Eq. [[51] and Eq. demand the covariant derivatives of the intrinsic deformation tensor N*? and
the intrinsic spin tensor M*?. Furthermore, Eq. B2 tells us that the covariant derivative of a covariant
tensor differs from the usual partial derivative by a sum of linear terms of Christoffel symbols which
are preceded by a negative sign. In the case of the covariant derivative of a contravariant tensor,
a positive sign appears in the linear terms involving Christoffel symbols (Eq. [64]). Nevertheless,
both usual partial derivatives and the Christoffel symbols may be obtained numerically with use of
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xT 2. curve
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Figure 21: Geometrical quantities in a vicinity of a point P.

finite differencing scheme as explained in Section. In consequence, our problem of computing
derivatives of a curvature tensor may be reduced in applying Eq.[621on the terms calculated separately
with use of the procedure given in Section

One may raise the question why do not adopt the estimation procedure proposed by Rusinkiewicz,
which is detailed in Section This is because that we were not able to reproduce the results
obtained algebraically with the procedure proposed by Rusinkiewicz.

6 A Cloth Model

We propose to model cloth as an inextensible normal-director elastic Cosserat surface, presented in
Section This choice is based on the fact that this model meets two desired requirements:

1. “what you control is what you get” paradigm: the applied forces and the changes in the
surface’s shape should be directly related, and

2. bending representativeness: a variety of cloth’s bending behaviors should be distinguishable
and reproduceable.

In the Cosserat surface the strain and bending measures are given in terms of the coefficients of
the first (Eq.I38) and the second forms (Eq. I39). The first fundamental form (Eq.[d) provides us
direct access to the metric measures of a surface, such as curve length, angles of tangent vectors and
areas, without further reference to the ambient space, whereas the second fundamental form (Eq. [45])
gives us elements to quantitate the shape of surface in the neighborhood of a point P, or how far the
surface is displaced from the tangent plane of the surface at P.

Concerning the bending representativeness, there are two important concepts related to the shape
of a surface in the vicinity of a point: the intrinsic and the extrinsic geometries. An intrinsic geometric
property is the one that may be measured without leaving the surface; while an extrinsic one can
only be perceived by an observer located in the ambient space. Examples for intrinsic properties of a
surface are the coefficients of the first fundamental form, the surface’s area, the length of a curve on
the surface, and the Gaussain curvature. For exemplifying extrinsic characteristics we may mention
the coefficients of the second fundamental form and the mean curvature. The intrinsic properties of
most of inextensible fabrics, such as linen, cotton and jeans, are almost invariant while they deform.
To distinguish the shape states, that are indistinguishable by the intrinsic properties such as buckling,
we should use an extrinsic quantity. The mean curvature is an extrinsic measure and Eq. [[1] says
that it involves the products of the coefficients of the first and the second fundamental form. The
two terms appear in the expression of the Cosserat surface’s free energy (Eq. [I77]).
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6.1 Cosserat’s Formulation

We only propose to slightly modify the original formulations such that their variables have more
meaningful geometric interpretation. Figure [21]illustrates the principal elements of our cloth model
whose free energy has the following aspect

pA(r, 1) = D705 (1)ens () + U Kap () s (8) + O eap (t)rqs (1), (192)
where
2 = Laa AT A™ 4 ag(ATAP 4 A0 4P)]
U = Las AT AT 4 g ATAT  ar A% AT
0% = [a10A A + a11(ATAP? + A% AP
From several experiments we observed that these expressions may be further simplified without
degrading the visual effects. We might assume that %al = %az =, %a5 = %as = %cw = ¢ and
a10 = a11 = ¢ and obtain the following simplification
Fio Ll C— C[AO‘BA'Y‘S + (Aa"/ABti + Aa5Aﬁ'Y)]
\I,a,B'yé _ §[Aa,BA'y6 _’_Aa'yA,Bé _'_AaéAﬁ'y]
O = H[AP AT 4 (A AP L A0 AP (193)

The terms 7% and U*#7 affect predominantly the stretching and bending behaviors, respec-
tively. Hence, we denominate ¢ and ¢ elasticity coefficients and call the parameters ®*#7® and w2978
material properties. The term ©%#7 in its turn, affects prevalently the number of undulations
(out-of-plane behavior) on the deforming surface; thus ¢ is called the buckling factor.

The components of the internal surface tensors also assume more simplified version

MP @) = W% s5(t) + 0% e 5(t). (194)
NP = P (1) + 0% k5 (1), (195)

where e,5 and ks are the differential variations of the components v of the current metric and the
curvature tensors with respect to the values assumed in the initial state. Having these components
we may get the surface deformation tensor from Eq.[I911

Eq.[I86 provides us the component N3¢ of the surface deformation tensor. It requires the covariant
derivatives of M*”, which may be readily obtained from the procedure describes in Section. £.3.3] if
we neglect the contact director ! and the director couple L,

Being available N**, i € {1,2, 3}, at time instant ¢, we may take a discrete version of Eq. IS8T

VP (t 4 At) — 0P (1)

po°(t) = p X = NO(t) = bS(O)M () + pFP () — pbS ()17 (1)

V) - M) + pF (1)

pi*(t) = p = ME) + bap(ONE (1) + pF* (1) + (pL7)5(0)

M5 (8) + bas (DN (8) + pF2(8), (196)

|

Q

from which we may compute the velocity v = (v',v?,v®) at time ¢t + At

p’(t+ A1) = AUNII() = b5 (O)MI () + pF (1) + po” (1);
poP(t+ AL = AUMLL() + bas(NLS () + pF2 (1) + po*(t).
Then, the position vector r(t) = (z(t),y(t), 2(t)) follows immediately
r(t + At) = r(t) + v(t + At)At. (197)

The repeated covariant differentiation of M?* is obtained by differentiating M‘%a and is a special
case of Eq.

Ba
M@% - m‘;‘ + T M + T ME + F?BM@ + FgﬁMff - r;BMga - riﬁM‘g% (198)
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where M "%a may be computed from M B with use of the discrete form of Eq.
It is worth remarking that all physical quantities should be given with respect to the convected
coordinates (Section[]). The position-vector r.(t) with respect the cloth reference system is actually

ruc(t) = z(t)new_t(t) + y(t)new_b(t) + z(¢t)new._n(t).

It is, however, easier and more intuitive to specify the external forces F = (F17F27F3) in the
cloth reference system. Hence, we may alternatively take a discrete version of Eq. [150]

v(t+ At) — v(t)
r At
pv(t+At) = ALN}, +Np + pF) + pv(t) (199)

= Nj + Np +pF

In this case, we should determine the covariant derivatives N‘ll and N‘22. From Eq.[I48] i.e.

N' = N''new_t(t) + N*'new_b(t) + N*'new_n(t)
N? = N'"new_t(t) + N**new_b(t) + N**new.n(t),

and applying Eq. [[9 Eq. BIl and Eq. [I86 we get the following expressions that provide us N‘ll and
N‘22 in the cloth reference system

N‘ll = (Nllnew_t(t))‘l + (Nanew_b(t))‘l + (NSlnew_n(t))‘l
= N‘lll (new_t(t)) + N'! (new_t(t)): + Nﬁl (new_b(t)) + N*' (new_b(%))|1
+N‘311 (new_n(t)) + N (new_n(t))1
= N‘lll (new_t(t)) + N''(biinew n(t)) + Nﬁl (new_b(t)) + N*' (bainew_n(t))
—G-N‘Sl1 (new.n(t)) — N*! (binew_t(t) + binew_b(t))
= (N‘ll1 — N*'b})new_t(t) + (Nﬁ1 — N*'b)new _b(t)
+(N'"b11 + N?'bo1 + Njj )new_n(t)
= (N} = N*b)new_t(t) + (N7 — N*'b})new_b(t)
+(N" b1y + N*Mbay + (MY + M}53))new n(t)
N‘QQ = (N"7new.t(t)))2 + (N**new._b(t))2 + (N**new.n(t)),
= N‘122 (new_t(t)) + le(new_t(t))‘g + N‘222 (new_b(t)) + N*? (new_b(t))2
+N‘322 (new_n(t)) + N* (new_n(t))|s
= N‘122 (new_t(t)) + N'*(bianew n(t)) + N‘222 (new_b(t)) + N*2(baanew_n(t))
+N‘322 (new_n(t)) — N** (binew_t(t) + banew_b(t))
= (N‘122 — N*?b3)new_t(t) + (N‘222 — N*b3)new _b(t)
+(N"b12 + N**by2 + N5 )new_n(t)
= (N‘122 — N*?b3)new_t(t) + (N‘222 — N*b3)new _b(t)
+(N"?b12 + N*?bao + (M35 + M%) )new n(t) (200)

o T e

Now, our task is reduced to the estimation of the covariant derivatives. This may be performed with
use of a discrete form of Eq. or Eq.

Figure 22 presents the iterative simulation data flow. Starting from a sampled surface, we compute
the components of the internal forces N, M and their derivatives for each sample at a time instant
t. Then, we calculate the forces N‘ll and N‘ZQ with use of Eq. Substituting them in Eq.[I99] we
get the sample point’s acceleration v(t) and velocity v(¢ + At). This allows us to obtain the sample
position at next time instant ¢ + At. Successively, we get a series of mesh evolving forward in time
under physical and geometrical constraints. We remark that under the assumption that the director
vector is undeformed, we have neglected Eq. in our proposal.

6.2 Boundary Conditions

Boundary conditions for the cloth simulation as a Cosserat mesh are fundamental for simulation
stability.
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3D samples NBe(t), MYe(t o
material coefficients Ba( ) w< . N|a(t) r(t + At)
rEtog =r(t) NP (), Mgg(t v(t),v(t + At)

t

v to = V(t)

Figure 22: Simulation data flow.

Lattice Boltzmann models do not directly simulate the evolution of the flow velocity. Instead,
they calculate the dynamics of particle populations which stem from a microscopic description of
the fluid. While the macro- scopic pressure and velocity fields are easily calculated from the particle
populations, the reverse procedure is more contrived. Thus, implementing a velocity condi- tion
on straight boundaries boils down to finding a way to translate from macroscopic flow variables to
particle populations. This problem has been approached by au- thors from different viewpoints, some
of them based on the kinetic theory of gases, and some of them on a hy- drodynamic description
of fluids. Although the numerical scheme of the LB method is derived from microscopic physics,
it is able to recover ac- curate solutions of the macroscopic Navier-Stokes equa- tions. This can be
shown in various ways through an asymptotic analysis, in which particle populations are formally
related to macroscopic flow variables. An anal- ysis of this type is however not always conducted in
the literature for boundary conditions, and only little is known about their hydrodynamic limit. In
the present article, the boundary conditions are therefore inspected with help of a Chapman-Enskog
multi-scale analysis

7 Conclusions

The main motivation of our work is to devise a cloth model that has an intuitive interface and produces
realistic cloth’s appearance. We conjecture that the Cosserat surface is a potential candidate. In this
report we provide the mathematical foundation of the Cosserat surface. Nevertheless, as mentioned in
Section [2.5] we are working on surface samples without the knowledge of its parametrization. Hence,
as a contribution, we develop in this report a series of discrete formulations that allow the estimation
of the geometric and physical quantities from a mesh of arbitrary topology. Moreover, we present a
procedure to implement it in a computational framework.

As further work we will implement the proposed procedure and analyze the valid value range for
the elasticity coefficients and the buckling factor.
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